The Role of Sphingolipids in Cardiovascular Pathologies

Pleiades Publishing Ltd - Tập 13 - Trang 122-131 - 2019
A. V. Alessenko1, A. T. Lebedev2, I. N. Kurochkin2
1Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
2Moscow State University, Moscow, Russia

Tóm tắt

Cardiovascular diseases (CVD) remain the leading cause of death in industrialized countries. One of the most important risk factors for atherosclerosis is hypercholesterolemia; its diagnostics is mainly based on regular analysis of the lipid profile, including the determination of total cholesterol, low and high density lipoprotein cholesterol, and triglycerides. However, in recent years, much attention has been paid to the crosstalk between metabolic pathways of cholesterol and sphingolipid biosynthesis. Sphingolipids are a group of lipids that include a molecule of sphingosine aliphatic alcohol. These include sphingomyelins, cerebrosides, gangliosides, ceramides, sphingosines, and sphingosine-1-phosphate. It has been found that sphingolipid catabolism is associated with cholesterol catabolism. However, the exact mechanism of this interaction still remains unknown. Ceramide attracts particular attention as a CVD inducer. Aggregated lipoproteins isolated from atherosclerotic zones were found to be enriched with ceramides. Ceramide and sphingosine levels increase after ischemia/reperfusion of the heart, in the infarction area and in the blood, as well as in hypertension. Sphingosine-1-phosphate (S-1-P) exhibits pronounced cardioprotective properties. Its quantity sharply decreased during ischemia and myocardial infarction. S-1-P predominated in the structure of high-density lipoproteins (HDL), where it has a significant impact on their multiple functions. An increase in ceramide and sphingosine and a decrease in S-1-P levels during progression of coronary heart disease may be an important factor in the development of atherosclerosis. It is proposed to use determination of sphingolipid levels in the blood plasma as markers for early diagnostics of cardiac ischemia and in hypertension in humans. Recently, intensive studies have been undertaken to create drugs that can correct S-1-P metabolism. The most successful developments include agents targeted to the S-1-P receptor, which mediates all S-1-P effects. Chromatography-mass spectrometry is proposed as the main method for testing these lipids.

Tài liệu tham khảo

Borodzicz, S., Czarzasta, K., Kuch, M., and Cudnoch-Jedrzejewska, A., Lipids Health Disease, 2015, vol. 14, 55 https://doi.org/10.1186/s12944-015-0053-y Park, T.S. and Goldberg, I., J. Heart Fail. Clin., 2012, vol. 8, pp. 633–641. https://doi.org/10.1016/j.hfc.2012.06.003 Pan, W., Yu, J., Shi, R., Yan, L., Yang, T., Li, Y., Zhang, Z., Yu, G., Bai, Y., Schuchman, E.H., He, X., and Zhang, G., Coron. Artery Dis., 2014, vol. 25, pp. 230–235. https://doi.org/10.1097/MCA.0000000000000079 Hannun, Y.A. and Obeid, L.M., Nat. Rev. Mol. Cell. Biol., 2018, vol. 19, pp. 175–191. https://doi.org/10.1038/nrm.2017.107 Hannun, Y.A. and Obeid, L.M., Nat. Rev. Mol. Cell. Biol., 2008, vol. 9, pp. 139–150. https://doi.org/10.1038/nrm2329 Pruett, S.T., Bushnev, A., Hagedorn, K., Adiga, M., Haynes, C.A., Sullards, M.C., Liotta, D.C., and Merrill, A.H., Jr., J. Lipid Res., 2008, vol. 49, pp. 1621–1639. Mao, C. and Obeid, L.V., Biochim. Biophys. Acta, 2008, vol. 1781, pp. 424–434. Grosch, S., Alessenko, A., and Albi, E., Mediator Inflammation, 2018, vol. 2018, 5378284. https://doi.org/10.1155/2018/5378284 Maceyka, M., Harikumar, K.B., Milstein, S., and Spiegel, S., Trends Cell Biol., 2012, vol. 22, pp. 50–60. Bielawska, A.E., Shapiro, J.P., Jiang, L., Melkonyan, H.S., Piot, C., Wolfe, C.L., Tomei, D., Hannun, Y.A., and Umansky, S.R., Am. J. Pathol., 1997, vol. 151, pp. 1257–1263. Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., et al., Biochim. Biophys. Acta, 2006, vol. 1758, pp. 1864–1884. https://doi.org/10.1016/j.bbamem.2006.08.009 Barenholz, Y., J. Biol. Chem., 2004, vol. 279, pp. 9997−10004. Stein, O., Ben-Naim, M., Dabach, Y., Hollander, G., and Stein, Y., Biochim. Biophys. Acta, 1992, vol. 1126, pp. 291–297. Härmälä, A.S., Pörn, M.I., and Slotte, J.P., Biochim. Biophys. Acta, 1993, vol. 1210, pp. 97–104. Modrzejewski, W., Knapp, M., Dobrzyn, A., Musial, W.J., and Górski, J., Przegl Lek., 2008, vol. 65, pp. 131–134. Phipps, Z.C., Seck, F., Davis, A.N., Rico, J.E., and McFadden, J.W., J. Dairy Sci., 2017, vol. 100, pp. 8602–8608. https://doi.org/10.3168/jds.2016-12538 Cordis, G.A., Yoshida, T., and Das, D.K., J. Pharm. Biomed. Anal., 1998, vol. 16, pp. 1189–1193. https://doi.org/10.1016/S0731-7085(97)00260-4 Spijkers, L.J., van den Akker, R.F., Janssen, B.J., Debets, J.J., De Mey, J.G., Stroes, E.S., van den Born, B.J., Wijesinghe, D.S., Chalfant, C.E., MacAleese, L., Eijkel, G.B., Heeren, R.M., Alewijn-se, A.E., and Peters, S.L., PLoS One, 2011, vol. 6, e21817. https://doi.org/10.1371/journal.pone.0021817 Knapp, M., Lisowska, A., Zabielski, P., Musiał, W., and Baranowski, M., Prostaglandins Other Lipid Mediat., 2013, vol. 106, pp. 53–61. https://doi.org/10.1016/j.prostaglandins.2013.10.001 Sattler, K. and Levkau, B., Cardiovasc. Res., 2009, vol. 82, pp. 201–211. Means, C.K. and Brown, J.H., Cardiovasc. Res., vol. 82, pp. 193–200. Fryer, R.M., Muthukumarana, A., Harrison, P.C., Nodop Mazurek, S., Chen, R.R., Harrington, K.E., et al., PLoS One, 2012, vol. 7, e52985. https://doi.org/10.1371/journal.pone.0052985 Baranowski, M., and Górski, J., J. Adv. Exp. Med. Biol., 2011, vol. 721, pp. 41–56. https://doi.org/10.1007/978-1-4614-0650-1_3 Czarny, M. and Schnitzer, J.E., Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 287, pp. H1344–H1352. Zarate, Y.A. and Hopkin, R.J., Lancet, 2008, vol. 372, pp. 1427–1435. https://doi.org/10.1016/S0140-6736(08)61589-5 Guertl, B., Noehammer, C., and Hoefler, G., Int. J. Exp. Pathol., 2000, vol. 81, pp. 349–372. https://doi.org/10.1046/j.1365-2613.2000.00186.x Cui, J., Engelman, R.M., Maulik, N., and Das, D.K., J. Am. Coll. Surg., 2004, vol. 198, pp. 770–777. https://doi.org/10.1016/j.jamcollsurg.2003.12.016 Zhang, D.X., Fryer, R.M., Hsu, A.K., Gross, G.J., Campbell, W.B., and Li, P.-L., Basic Res. Cardiol., 2001, vol. 96, pp. 267–274. https://doi.org/10.1007/s00395-012-0266-4 Beręsewicz, A., Dobrzyń, A., and Górski, J., J. Physiol. Pharmacol., 2002, vol. 53, pp. 371–382. Baranowski, M., Zabielski, P., Błachnio, A., and Górski, J., Acta Physiol., 2008, vol. 192, pp. 519–529. https://doi.org/10.1111/j.1748-1716.2007.01755.x Knapp, M., Zendzian-Piotrowska, M., Błachnio-Zabielska, A., Zabielski, P., Kurek, K., and Górski, J., Basic Res. Cardiol., 2012, vol. 107, p. 294. https://doi.org/10.1007/s00395-012-0294-0 Egom, E.E., Mamas, M.A., Chacko, S., Stringer, S.E., Charlton-Menys, V., El-Omar, M., et al., Front. Physiol., 2013, vol. 4, pp. 130–136. https://doi.org/10.3389/fphys.2013.00130 Usta, E., Mustafi, M., Artunc, F., Walker, T., Voth, V., Aebert, H., and Ziemer, G., J. Cardiothor. Surg., 2011, vol. 6, pp. 38–45. https://doi.org/10.1186/1749-8090-6-38 Cavalli, A.M., Ligutti, J.A., Gellings, N.M., et al., Basic Appl. Myol., 2002, vol. 12, pp. 167–175. Deutschman, D.H., Carstens, J.S., Klepper, R.L., Smith, W.S., Page, M.T., Young, T.R., et al., Am. Heart J., 2003, vol. 146, pp. 62–68. https://doi.org/10.1016/S0002-8703(03)00118-2 Vessey, D.A., Li, L., Kelley, M., Zhang, J., and Karliner, J.S., J. Biochem. Mol. Toxicol., 2008, vol. 22, pp. 113–118. Vessey, D.A., Kelley, M., Li, L., and Huang, Y., Oxid. Med. Cell. Longev., 2009, vol. 2, pp. 146–151. https://doi.org/10.4161/oxim.2.3.8622 Kurano, M. and Yatomi, Y., J. Atheroscler. Thromb., 2018, vol. 25, pp. 16–26. https://doi.org/10.5551/jat.RV17010 Peters, S.L.M. and Alewijnse, A.E., Curr. Opin. Pharmacol., 2007, vol. 7, pp. 186–192. https://doi.org/10.1016/j.coph.2006.09.008 Okajima, F., Biochim. Biophys. Acta, 2002, vol. 1582, pp. 132–137. Soltau, I., Mudersbach, E., Geissen, M., Schwedhelm, E., Winkler, M.S., Geffken, M., Peine, S., Schoen, G., Debus, E.S., Larena-Avellaneda, A., and Daum, G., PLoS One, 2016, vol. 11, no. 12, e0168302. https://doi.org/10.1371/journal.pone.0168302 Fukuda, Y., Kihara, A., and Igarashi, Y., Biochem. Biophys. Res. Commun., 2003, vol. 309, pp. 155–160. Jin, Z.-Q., Goetzl, E.J., and Karliner, J.S., Circulation, 2004, vol. 110, pp. 1980−1989. Jin, Z.-Q. and Karliner, J.S., Cardiovasc. Res., 2006, vol. 71, pp. 725–734. Bandhuvula, P., Honbo, N., Wang, G.-Y., et al., Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 300, pp. H1753–H1761. Karliner, J.S., Honbo, N., Summers, K., Gray, M.O., and Goetzl, E.J., J. Mol. Cell. Cardiol., 2001, vol. 33, pp. 1713–1717. Lecour, S., Smith, R.M., Woodward, B., Opie, L.H., Rochette, L., and Sack, M.N., J. Mol. Cell. Cardiol., 2002, vol. 34, pp. 509–518. Knapp, M., Zendzian-Piotrowska, M., Kurek, K., and Błachnio-Zabielska, A., Lipids, 2012, vol. 47, pp. 847–853. https://doi.org/10.1007/s11745-012-3694-x Knapp, M., Baranowski, M., Czarnowski, D., et al., Med. Sci. Monit., 2009, vol. 15, pp. CR490–CR493. Knapp, M., Lisowska, A., Zabielski, P., Musial, W., and Baranowski, M., Prostaglandins Other Lipid Mediat., 2013, vol. 106, pp. 53–61. Cannavo, A., Rengo, G., Liccardo, D., Pagano, G., Zincarelli, C., DeAngelis, M.C., et al., Circulation, 2013, vol. 128, pp. 1612–1622. https://doi.org/10.1161/CIRCULATIONAHA.113.002659 Cannavo, A., Liccardo, D., Komici, K., et al., Front. Pharmacol., 2017, vol. 8, 556. https://doi.org/10.3389/fphar.2017.00556 Argraves, K.M. and Argraves, W.S., J. Lipid Res., 2007, vol. 48, pp. 2325–2333. Murata, N., Sato, K., Kon, J., et al., Biochem. J., 2000, vol. 352, pp. 809–815. Zhang, B., Tomura, H., Kuwabara, A., et al., Atherosclerosis, 2005, vol. 178, pp. 199–205. Christoffersen, C., Obinata, H., Kumaraswamy, S.B., Galvani, S., et al., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 9613–9618. Means, C.K. and Brown, J.H., Cardiovasc. Res., 2009, vol. 82, pp. 193–200. Zhang, J., Honbo, N., Goetzl, E.J., et al., Am. J. Physiol. Heart Circ. Physiol., 2007, vol. 293, pp. H3150–H5158. Jin, Z.Q, Zhou, H.Z., Zhu, P., et al., Am. J. Physiol. Heart Circ. Physiol., 2002, vol. 282, pp. H1970–H1977. Vessey, D.A., Kelley, M., Li, L., et al., Med. Sci. Monit., 2006, vol. 12, pp. BR318–BR324. Igarashi, J. and Michel, T., Cardiovasc. Res., 2009, vol. 82, pp. 212–220. https://doi.org/10.1093/cvr/cvp064 Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., et al., Biochem. J., 2000, vol. 352, pp. 809–815. https://doi.org/10.1042/bj3520809 Levkau, B., Front. Pharmacol., 2015, vol. 6, 243. https://doi.org/10.3389/fphar.2015.00243 Theilmeier, G., Schmidt, C., Herrmann, J., Keul, P., Schafers, M., Herrgott, I., Mersmann J., Larmann, J., Hermann, S., Stypmann, J., Schober, O., Hil-debrand, R., Schulz, R., Heusch, G., Haude, M., et al., Circulation, 2006, vol. 114, pp. 1403–1409. Feuerborn, R., Becker, S., Poti, F., Nagel, P., Brodde, M., Schmidt, H., Christoffersen, C., Ceglarek, U., Burkhardt, R., and Nofer, J.R., Atherosclerosis, 2017, vol. 257, pp. 29–37. https://doi.org/10.1016/j.atherosclerosis.2016.12.009 Nofer, J.R., van der Giet, M., Tolle, M., Wolinska, I., von Wnuck Lipinski, K., Baba, H.A., Tietge, U.J., Godecke, A., Ishii, I., Kleuser, B., Schafers, M., Fobker, M., Zidek, W., Assmann, G., Chun, J., and Levkau, B., J. Clin. Invest., 2004, vol. 113, pp. 569–581. Sattler, K.J., Elbasan, S., Keul, P., Elter-Schulz, M., Bode, C., Graler, M.H., Brocker-Preuss, M., Budde, T., Erbel, R., Heusch, G., and Levkau, B., Basic Res. Cardiol., 2010, vol. 105, pp. 821–832. Okajima, F., Biochim. Biophys. Acta, 2002, vol. 1582, pp. 132–137. Reddy, S.T., Wadleigh, D.J., Grijalva, V., Ng, C., Hama, S., Gangopadhyay, A., Shih, D.M., Lusi, A.J., et al., Arterioscler. Thromb. Vasc. Biol., 2001, vol. 21, pp. 542–547. Aviram, M., Eur. J. Clin. Chem. Clin. Biochem., 1996, vol. 34, pp. 599–608. Clay, H., Wilsbacher, L.D., Wilson, S.J., Duong, D.N., McDonald, M., Lam, I., et al., Dev. Biol., 2016, vol. 418, pp. 157–165. doi 2016.06. 024https://doi.org/10.1016/j.ydbio Brait, V.H., Tarrasón, G., Gavaldà, A., Godessart, N., and Planas, A.M., Stroke, 2016, vol. 47, pp. 3053–3056. https://doi.org/10.1161/STROKEAHA.116.015371 Hofmann, U., Burkard, N., Vogt, C., Thoma, A., Frantz, S., Ertl, G., et al., Cardiovasc. Res., 2009, vol. 83, pp. 285–293. doihttps://doi.org/10.1093/cvr/cvp137 Egom, E.E., Ke, Y., Musa, H., Mohamed, T.M., Wang, T., Cartwright, E., et al., J. Mol. Cell. Cardiol., 2010, vol. 48, pp. 406–414. https://doi.org/10.1016/j.yjmcc.2009.10.009 Santos-Gallego, C.G., Vahl, T.P., Goliasch, G., Picatoste, B., Arias, T., Ishikawa, K., et al., Circulation, 2016, vol. 133, pp. 954–966. https://doi.org/10.1161/CIRCULATIONAHA.115.012427 Goltz, D., Huss, S., Ramadori, E., Büttner, R., Diehl, L., and Meyer, R., Clin. Exp. Pharmacol. Physiol., 2015, vol. 42, pp. 1168–1177. https://doi.org/10.1111/1440-1681.12465 Means, C.K., Xiao, C.Y., Li, Z., Zhang, T., Omens, J.H., Ishii, I., et al., Am. J. Physiol. Heart. Circ. Physiol., 2007, vol. 292, pp. H2944–H2951. https://doi.org/10.1152/ajpheart.01331.2006 Sugahara, K., Maeda, Y., Shimano, K., Mogami, A., Kataoka, H., Ogawa, K., et al., Br. J. Pharmacol., 2017, vol. 174, pp. 15–27. https://doi.org/10.1111/bph.13641 Gundewar, S. and Lefer, D.J., Biochim. Biophys. Acta., 2008, vol. 1780, pp. 571–576. Brait, V.H., Tarrasón, G., Gavaldà, A., Godessart, N., and Planas, A.M., Stroke, 2016, vol. 47, pp. 3053–3056. https://doi.org/10.1161/STROKEAHA.116.015371 Billich, A. and Baumruker, T., Subcell. Biochem., 2008, vol. 49, pp. 487–522. Spijkers, L.J.A., van den Akker, R.F.P., Janssen, B.J.A., Debets, J.J., De Mey, J.G., Stroes, E.S., et al., PLoS One, 2011, vol. 6, e21817. https://doi.org/10.1371/journal.pone.0021817 Spijkers, L.J.A., Janssen, B.J.A., Nelissen, J., Meens, M.J., Wijesinghe, D., Chalfant, C.E., et al., PLoS One, 2011, vol. 6, e29222. https://doi.org/10.1371/journal.pone.0029222 Fenger, M., Linneberg, A., Jorgensen, T., Madsbad, S., Sobye, K., Eugen-Olsen, J., and Jeppesen, J., BMC Genet., 2011, vol. 12, 44. Gulati, S., Liu, Y., Munkacsi, A.B., Wilcox, L., and Sturley, S.L., Prog. Lipid Res., 2010, vol. 49, pp. 353–365. https://doi.org/10.1016/j.plipres.2010.03.003 Jin, S., Zhou, F., Katirai, F., and Li, P.-L., Antioxid. Redox Signal., 2011, vol. 15, pp. 1043–1083. https://doi.org/10.1089/ars.2010.3619 Megha and London, E., J. Biol. Chem., 2004, vol. 279, pp. 997–1004. Slotte, J.P. and Bierman, E.L., Biochem. J., 1988, vol. 250, pp. 653–658. Marmillot, P., Patel, S., and Lakshman, M.R., Metabolism, 2007, vol. 56, pp. 251–259. Leventhal, A.R., Chen, W., Tall, A.R., and Tabas, I., J. Biol. Chem., 2001, vol. 276, pp. 44 976–44 983. Subbaiah, P.V., Gesquiere, L.R., and Wang, K., J. Lipid Res., 2005, vol. 46, pp. 2699–2705. Merril, A.H., Jr., Sullard, M.C., Allegood, J.C., Kelly, S., and Wang, E., Methods, 2005, vol. 36, pp. 207–224. Hinterwirth, H., Stegemann, C., and Mayr, M., Circ. Cardiovasc. Genet., 2014, vol. 27, pp. 941–954. https://doi.org/10.1161/CIRCGENETICS.114.000 Ellims, A.H., Wong, G., Weir, J.M., Lew, P., Meikle, P.J., and Taylor, A.J., Eur. Heart J. Cardiovasc. Imaging, 2014, vol. 15, pp. 908–916. https://doi.org/10.1093/ehjci/jeu033 Tham, Y.K., Huynh, K., Mellett, N.A., Henstridge, D.C., Kiriazis, H., Ooi, J.Y.Y., Matsumoto, A., Patterson, N.L., Sadoshima, J., Meikle, P.J., and McMullen, J.R., Biochim. Biophys. Acta, 2018, vol. 1863, pp. 219–234. Au, A., Cheng, K.K., and Wei, L.K., Adv. Exp. Med. Biol., 2017, vol. 956, pp. 599–613. https://doi.org/10.1007/5584_2016_79 Haus, J.M., Kashyap, S.R., Kasumov, T., Zhang, R., Kelly, K.R., Defronzo, R.A., and Kirwan, J.P., Diabetes, 2009, vol. 58, pp. 337–343. https://doi.org/10.2337/db08-1228