Vai Trò của Viêm và Các Trung Gian Viêm Trong Sự Phát Triển, Tiến Triển, Di Căn và Kháng Hóa Chất Của Ung Thư Buồng Trứng Biểu Thiết
Tóm tắt
Viêm đóng vai trò trong việc khởi phát và phát triển nhiều loại ung thư, bao gồm ung thư buồng trứng biểu thiết (EOC) và ung thư buồng trứng mầm cao độ (HGSC), một loại của EOC. Có mối liên hệ giữa EOC và viêm do ổ bụng và viêm do rụng trứng. Thêm vào đó, các EOC có một thành phần viêm mà góp phần vào tiến trình của chúng. Tại các vị trí viêm, các tế bào biểu mô bị tiếp xúc với các mức độ cao hơn của các chất trung gian viêm như các loại oxy phản ứng, cytokine, prostaglandin và yếu tố tăng trưởng, góp phần vào việc gia tăng phân chia tế bào, cũng như thay đổi di truyền và biểu sinh. Những thay đổi do tiếp xúc này thúc đẩy sự tăng sinh tế bào quá mức, tăng cường sống sót, chuyển hóa ác tính và sự phát triển của ung thư. Hơn nữa, môi trường vi mô khối u pro-inflammatory (TME) cũng góp phần vào việc di căn và kháng hóa chất của EOC. Trong bài đánh giá này, chúng tôi sẽ thảo luận về vai trò của viêm và các chất trung gian viêm trong sự phát triển, tiến triển, di căn và kháng hóa chất của EOC.
Từ khóa
#viêm #ung thư buồng trứng #trung gian viêm #di căn #kháng hóa chấtTài liệu tham khảo
Maiuri, 2016, Interplay Between Inflammation and Epigenetic Changes in Cancer, Prog. Mol. Biol. Transl. Sci., 144, 69, 10.1016/bs.pmbts.2016.09.002
Clendenen, 2011, Circulating inflammation markers and risk of epithelial ovarian cancer, Cancer Epidemiol. Biomark. Prev., 20, 799, 10.1158/1055-9965.EPI-10-1180
Chou, 2005, Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K-Akt/NF-κB pathway by lysophosphatidic acid, an ovarian cancer-activating factor, Carcinogenesis, 26, 45, 10.1093/carcin/bgh301
Ferrari, 1997, Regulation of NF-κ B activation by MAP kinase cascades, Immunobiology, 198, 35, 10.1016/S0171-2985(97)80025-3
Gajewski, 2013, Innate and adaptive immune cells in the tumor microenvironment, Nat. Immunol., 14, 1014, 10.1038/ni.2703
Wilson, 2009, Epigenetic control of T-helper-cell differentiation, Nat. Rev. Immunol., 9, 91, 10.1038/nri2487
Tone, 2012, The role of the fallopian tube in ovarian cancer, Clin. Adv. Hematol. Oncol., 10, 296
Petrovska, 1996, Quantitative changes in macrophage distribution in normal mouse ovary over the course of the estrous cycle examined with an image analysis system, Am. J. Reprod. Immunol., 36, 175, 10.1111/j.1600-0897.1996.tb00159.x
Takaya, 1997, Macrophages in normal cycling human ovaries; immunohistochemical localization and characterization, Hum. Reprod., 12, 1508, 10.1093/humrep/12.7.1508
Wu, 2004, Macrophage contributions to ovarian function, Hum. Reprod. Update, 10, 119, 10.1093/humupd/dmh011
Tingen, 2011, A macrophage and theca cell-enriched stromal cell population influences growth and survival of immature murine follicles in vitro, Reproduction, 141, 809, 10.1530/REP-10-0483
Lau, 2014, Altered expression of inflammation-associated genes in oviductal cells following follicular fluid exposure: Implications for ovarian carcinogenesis, Exp. Biol. Med., 239, 24, 10.1177/1535370213508216
King, 2011, The impact of ovulation on fallopian tube epithelial cells: Evaluating three hypotheses connecting ovulation and serous ovarian cancer, Endocr. Relat. Cancer, 18, 627, 10.1530/ERC-11-0107
Gong, 2013, Age at menarche and risk of ovarian cancer: A meta-analysis of epidemiological studies, Int. J. Cancer, 132, 2894, 10.1002/ijc.27952
Chiaffarino, 2001, Reproductive and hormonal factors and ovarian cancer, Ann. Oncol., 12, 337, 10.1023/A:1011128408146
Fortner, 2015, Reproductive and hormone-related risk factors for epithelial ovarian cancer by histologic pathways, invasiveness and histologic subtypes: Results from the EPIC cohort, Int. J. Cancer, 137, 1196, 10.1002/ijc.29471
Espey, 1980, Ovulation as an inflammatory reaction—A hypothesis, Biol. Reprod., 22, 73, 10.1095/biolreprod22.1.73
Machelon, 1997, Production of ovarian cytokines and their role in ovulation in the mammalian ovary, Eur. Cytokine Netw., 8, 137
Chumduri, 2013, Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response, Cell. Host Microbe, 13, 746, 10.1016/j.chom.2013.05.010
Ingerslev, 2017, The potential role of infectious agents and pelvic inflammatory disease in ovarian carcinogenesis, Infect. Agent Cancer, 12, 25, 10.1186/s13027-017-0134-9
Burney, 2012, Pathogenesis and pathophysiology of endometriosis, Fertil. Steril., 98, 511, 10.1016/j.fertnstert.2012.06.029
Vercellini, 2011, The ‘incessant menstruation’ hypothesis: A mechanistic ovarian cancer model with implications for prevention, Hum. Reprod., 26, 2262, 10.1093/humrep/der211
Burghaus, S., Haberle, L., Schrauder, M.G., Heusinger, K., Thiel, F.C., Hein, A., Wachter, D., Strehl, J., Hartmann, A., and Ekici, A.B. (2015). Endometriosis as a risk factor for ovarian or endometrial cancer—Results of a hospital-based case-control study. BMC Cancer, 15.
Sayasneh, 2011, Endometriosis and ovarian cancer: A systematic review, ISRN Obstet. Gynecol., 2011, 140310, 10.5402/2011/140310
Gunderson, 2016, The pro-inflammatory effect of obesity on high grade serous ovarian cancer, Gynecol. Oncol., 143, 40, 10.1016/j.ygyno.2016.07.103
Poole, 2013, A prospective study of circulating C-reactive protein, interleukin-6, and tumor necrosis factor alpha receptor 2 levels and risk of ovarian cancer, Am. J. Epidemiol., 178, 1256, 10.1093/aje/kwt098
Ose, 2015, Inflammatory Markers and Risk of Epithelial Ovarian Cancer by Tumor Subtypes: The EPIC Cohort, Cancer Epidemiol. Biomark. Prev., 24, 951, 10.1158/1055-9965.EPI-14-1279-T
Duleba, 2012, Is PCOS an inflammatory process?, Fertil. Steril., 97, 7, 10.1016/j.fertnstert.2011.11.023
Kelly, 2001, Low grade chronic inflammation in women with polycystic ovarian syndrome, J. Clin. Endocrinol. Metab., 86, 2453, 10.1210/jcem.86.6.7580
Gonzalez, 2011, Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis, Fertil. Steril., 95, 1048, 10.1016/j.fertnstert.2010.11.036
Gonzalez, 2009, Evidence of proatherogenic inflammation in polycystic ovary syndrome, Metabolism, 58, 954, 10.1016/j.metabol.2009.02.022
Glintborg, 2009, Plasma monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α are increased in patients with polycystic ovary syndrome (PCOS) and associated with adiposity, but unaffected by pioglitazone treatment, Clin. Endocrinol., 71, 652, 10.1111/j.1365-2265.2009.03523.x
Villuendas, 2004, Serum interleukin-18 concentrations are increased in the polycystic ovary syndrome: Relationship to insulin resistance and to obesity, J. Clin. Endocrinol. Metab., 89, 806, 10.1210/jc.2003-031365
Yang, 2011, Is interleukin-18 associated with polycystic ovary syndrome?, Reprod. Biol. Endocrinol., 9, 7, 10.1186/1477-7827-9-7
Tarkun, 2006, Association between Circulating Tumor Necrosis Factor-α, Interleukin-6, and Insulin Resistance in Normal-Weight Women with Polycystic Ovary Syndrome, Metab. Syndr. Relat. Disord., 4, 122, 10.1089/met.2006.4.122
Vgontzas, 2006, Plasma interleukin 6 levels are elevated in polycystic ovary syndrome independently of obesity or sleep apnea, Metabolism, 55, 1076, 10.1016/j.metabol.2006.04.002
Dinger, 2005, DNA damage, DNA susceptibility to oxidation and glutathione level in women with polycystic ovary syndrome, Scand. J. Clin Lab. Investig., 65, 721, 10.1080/00365510500375263
Harris, 2016, Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: A systematic review, Fertil. Res. Pract., 2, 14, 10.1186/s40738-016-0029-2
Heller, 1996, The relationship between perineal cosmetic talc usage and ovarian talc particle burden, Am. J. Obstet. Gynecol., 174, 1507, 10.1016/S0002-9378(96)70597-5
Henderson, 1979, Talc in normal and malignant ovarian tissue, Lancet, 1, 499, 10.1016/S0140-6736(79)90860-2
Muscat, 2008, Perineal talc use and ovarian cancer: A critical review, Eur J. Cancer Prev., 17, 139, 10.1097/CEJ.0b013e32811080ef
Brasky, 2013, Non-steroidal anti-inflammatory drugs and endometrial cancer risk in the VITamins And Lifestyle (VITAL) cohort, Gynecol. Oncol., 128, 113, 10.1016/j.ygyno.2012.10.005
Prizment, 2010, Nonsteroidal anti-inflammatory drugs and risk for ovarian and endometrial cancers in the Iowa Women’s Health Study, Cancer Epidemiol. Biomark. Prev., 19, 435, 10.1158/1055-9965.EPI-09-0976
Fairfield, 2002, Aspirin, other NSAIDs, and ovarian cancer risk (United States), Cancer Causes Control., 13, 535, 10.1023/A:1016380917625
Trabert, B., Poole, E.M., White, E., Visvanathan, K., Adami, H.O., Anderson, G.L., Brasky, T.M., Brinton, L.A., Fortner, R.T., and Gaudet, M. (2018). Analgesic Use and Ovarian Cancer Risk: An Analysis in the Ovarian Cancer Cohort Consortium. J. Natl. Cancer Inst.
Peres, 2016, Analgesic medication use and risk of epithelial ovarian cancer in African American women, Br. J. Cancer, 114, 819, 10.1038/bjc.2016.39
Barnes, 2002, Effects of nonsteroidal anti-inflammatory agents (NSAIDs) on ovarian carcinoma cell lines: Preclinical evaluation of NSAIDs as chemopreventive agents, Clin. Cancer Res., 8, 202
Arango, 2001, Aspirin effects on endometrial cancer cell growth, Obstet. Gynecol., 97, 423
Gao, 2004, Non-steroidal anti-inflammatory drugs inhibit cellular proliferation and upregulate cyclooxygenase-2 protein expression in endometrial cancer cells, Cancer Sci., 95, 901, 10.1111/j.1349-7006.2004.tb02200.x
Li, 2002, JTE-522, a selective COX-2 inhibitor, inhibits cell proliferation and induces apoptosis in RL95-2 cells, Acta Pharmacol Sin., 23, 631
Hsu, 2002, Aspirin potently inhibits oxidative DNA strand breaks: Implications for cancer chemoprevention, Biochem. Biophys. Res. Commun., 293, 705, 10.1016/S0006-291X(02)00271-1
Hales, 2008, Cyclooxygenases expression and distribution in the normal ovary and their role in ovarian cancer in the domestic hen (Gallus domesticus), Endocrine, 33, 235, 10.1007/s12020-008-9080-z
Urick, 2008, VEGF expression and the effect of NSAIDs on ascites cell proliferation in the hen model of ovarian cancer, Gynecol. Oncol., 110, 418, 10.1016/j.ygyno.2008.05.018
Urick, 2009, Dietary aspirin decreases the stage of ovarian cancer in the hen, Gynecol. Oncol., 112, 166, 10.1016/j.ygyno.2008.09.032
Toss, 2015, Hereditary ovarian cancer: Not only BRCA 1 and 2 genes, Biomed. Res. Int., 2015, 341723, 10.1155/2015/341723
Liu, 2004, A genetically defined model for human ovarian cancer, Cancer Res., 64, 1655, 10.1158/0008-5472.CAN-03-3380
Szotek, 2006, Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness, Proc. Natl. Acad. Sci. USA, 103, 11154, 10.1073/pnas.0603672103
Zhang, 2008, Identification and characterization of ovarian cancer-initiating cells from primary human tumors, Cancer Res., 68, 4311, 10.1158/0008-5472.CAN-08-0364
Lane, D., Matte, I., Rancourt, C., and Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11.
Amini, 2015, Intratumoral interleukin-6 predicts ascites formation in patients with epithelial ovarian cancer: A potential tool for close monitoring, J. Ovarian Res., 8, 58, 10.1186/s13048-015-0183-x
Rath, 2010, Expression of soluble interleukin-6 receptor in malignant ovarian tissue, Am. J. Obstet. Gynecol., 203, 230.e1, 10.1016/j.ajog.2010.03.034
Lo, 2011, IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer, Cancer Res., 71, 424, 10.1158/0008-5472.CAN-10-1496
Dalal, 2018, Biomarker potential of IL-6 and VEGF-A in ascitic fluid of epithelial ovarian cancer patients, Clin. Chim. Acta, 482, 27, 10.1016/j.cca.2018.03.019
Bapat, 2005, Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer, Cancer Res., 65, 3025, 10.1158/0008-5472.CAN-04-3931
Wang, 2016, Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells, Oncotarget, 7, 76006, 10.18632/oncotarget.12579
Agarwal, 2005, Role of oxidative stress in female reproduction, Reprod. Biol. Endocrinol., 3, 28, 10.1186/1477-7827-3-28
Shkolnik, 2011, Reactive oxygen species are indispensable in ovulation, Proc. Natl. Acad. Sci. USA, 108, 1462, 10.1073/pnas.1017213108
Waris, 2006, Reactive oxygen species: Role in the development of cancer and various chronic conditions, J. Carcinog., 5, 14, 10.1186/1477-3163-5-14
King, 2013, Early transformative changes in normal ovarian surface epithelium induced by oxidative stress require Akt upregulation, DNA damage and epithelial-stromal interaction, Carcinogenesis, 34, 1125, 10.1093/carcin/bgt003
Levanon, 2010, Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis, Oncogene, 29, 1103, 10.1038/onc.2009.402
Huang, 2015, Mutagenic, surviving and tumorigenic effects of follicular fluid in the context of p53 loss: Initiation of fimbria carcinogenesis, Carcinogenesis, 36, 1419, 10.1093/carcin/bgv132
Kalinina, 2007, Expression of genes for thioredoxin 1 and thioredoxin 2 in multidrug resistance ovarian carcinoma cells SKVLB, Bull. Exp. Biol. Med., 144, 301, 10.1007/s10517-007-0316-3
Ohno, T., Hirota, K., Nakamura, H., Masutani, H., Sasada, T., and Yodoi, J. (1998). Thioredoxin and Its Involvement in the Redox Regulation of Transcription Factors, NF-κB and AP-1. Oxygen Homeostasis and Its Dynamics, Springer.
Huisman, 2015, Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion, Mol. Oncol., 9, 1259, 10.1016/j.molonc.2015.03.003
Klotz, 2015, Redox regulation of FoxO transcription factors, Redox Biol, 6, 51, 10.1016/j.redox.2015.06.019
Ozdemir, 2012, Methylation of tumor suppressor genes in ovarian cancer, Exp. Ther. Med., 4, 1092, 10.3892/etm.2012.715
Niwa, 2010, Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells, Cancer Res., 70, 1430, 10.1158/0008-5472.CAN-09-2755
Ding, 2016, Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage, J. Mol. Cell. Biol., 8, 244, 10.1093/jmcb/mjv050
Maiuri, 2017, Mismatch Repair Proteins Initiate Epigenetic Alterations during Inflammation-Driven Tumorigenesis, Cancer Res., 77, 3467, 10.1158/0008-5472.CAN-17-0056
Sapoznik, 2016, Activation-Induced Cytidine Deaminase Links Ovulation-Induced Inflammation and Serous Carcinogenesis, Neoplasia, 18, 90, 10.1016/j.neo.2015.12.003
Gupta, 2016, TNF-α expression, risk factors, and inflammatory exposures in ovarian cancer: Evidence for an inflammatory pathway of ovarian carcinogenesis?, Hum. Pathol., 54, 82, 10.1016/j.humpath.2016.03.006
Moradi, 1993, Serum and ascitic fluid levels of interleukin-1, interleukin-6, and tumor necrosis factor-α in patients with ovarian epithelial cancer, Cancer, 72, 2433, 10.1002/1097-0142(19931015)72:8<2433::AID-CNCR2820720822>3.0.CO;2-L
Szlosarek, 2006, Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium, Mol. Cancer Ther., 5, 382, 10.1158/1535-7163.MCT-05-0303
Kulbe, 2007, The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells, Cancer Res., 67, 585, 10.1158/0008-5472.CAN-06-2941
Charles, 2009, The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans, J. Clin. Investig., 119, 3011, 10.1172/JCI39065
Berek, 1991, Serum interleukin-6 levels correlate with disease status in patients with epithelial ovarian cancer, Am. J. Obstet. Gynecol., 164, 1038, 10.1016/0002-9378(91)90582-C
Scambia, 1995, Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer, Br. J. Cancer, 71, 354, 10.1038/bjc.1995.71
Alberti, 2012, Ligand-dependent EGFR activation induces the co-expression of IL-6 and PAI-1 via the NFkB pathway in advanced-stage epithelial ovarian cancer, Oncogene, 31, 4139, 10.1038/onc.2011.572
Hagemann, 2007, Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis, Mol. Cancer Ther., 6, 1993, 10.1158/1535-7163.MCT-07-0118
Oh, 2015, Tissue transglutaminase-interleukin-6 axis facilitates peritoneal tumor spreading and metastasis of human ovarian cancer cells, Lab. Anim. Res., 31, 188, 10.5625/lar.2015.31.4.188
Wang, 2012, Interleukin-6 signaling regulates anchorage-independent growth, proliferation, adhesion and invasion in human ovarian cancer cells, Cytokine, 59, 228, 10.1016/j.cyto.2012.04.020
Takaishi, 2010, Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation, Cancer Sci., 101, 2128, 10.1111/j.1349-7006.2010.01652.x
Maccio, 1998, High serum levels of soluble IL-2 receptor, cytokines, and C reactive protein correlate with impairment of T cell response in patients with advanced epithelial ovarian cancer, Gynecol. Oncol., 69, 248, 10.1006/gyno.1998.4974
Rabinovich, 2007, Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6, Anticancer Res., 27, 267
Runesson, 1996, The human preovulatory follicle is a source of the chemotactic cytokine interleukin-8, Mol. Hum. Reprod, 2, 245, 10.1093/molehr/2.4.245
Brannstrom, 1993, Localization of leukocyte subsets in the rat ovary during the periovulatory period, Biol. Reprod., 48, 277, 10.1095/biolreprod48.2.277
Kassim, 2004, Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients, Clin. Biochem., 37, 363, 10.1016/j.clinbiochem.2004.01.014
Ivarsson, 1998, The chemotactic cytokine interleukin-8—A cyst fluid marker for malignant epithelial ovarian cancer?, Gynecol. Oncol., 71, 420, 10.1006/gyno.1998.5198
Radke, 1996, Cytokine level in malignant ascites and peripheral blood of patients with advanced ovarian carcinoma, Geburtshilfe Frauenheilkd., 56, 83, 10.1055/s-2007-1022247
Wang, 2012, Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion, Cytokine, 59, 145, 10.1016/j.cyto.2012.04.013
Hirose, 1995, Chemokine gene transfection into tumour cells reduced tumorigenicity in nude mice in association with neutrophilic infiltration, Br. J. Cancer, 72, 708, 10.1038/bjc.1995.398
Lee, 2000, IL-8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration, J. Immunol., 164, 2769, 10.4049/jimmunol.164.5.2769
Tokumura, 1999, Production of lysophosphatidic acids by lysophospholipase D in human follicular fluids of In vitro fertilization patients, Biol. Reprod., 61, 195, 10.1095/biolreprod61.1.195
Chen, 2008, Lysophosphatidic acid up-regulates expression of interleukin-8 and -6 in granulosa-lutein cells through its receptors and nuclear factor-κB dependent pathways: Implications for angiogenesis of corpus luteum and ovarian hyperstimulation syndrome, J. Clin. Endocrinol. Metab., 93, 935, 10.1210/jc.2007-1512
Fang, 2000, Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer, Ann. N. Y. Acad. Sci., 905, 188, 10.1111/j.1749-6632.2000.tb06550.x
Xu, 1998, Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers, JAMA, 280, 719, 10.1001/jama.280.8.719
Xiao, 2001, Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: Comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids, Anal. Biochem., 290, 302, 10.1006/abio.2001.5000
Mills, 2002, Critical role of lysophospholipids in the pathophysiology, diagnosis, and management of ovarian cancer, Cancer Treat. Res., 107, 259
Westermann, 1998, Malignant effusions contain lysophosphatidic acid (LPA)-like activity, Ann. Oncol., 9, 437, 10.1023/A:1008217129273
Xu, 1995, Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients, Clin. Cancer Res., 1, 1223
Symowicz, 2005, Cyclooxygenase-2 functions as a downstream mediator of lysophosphatidic acid to promote aggressive behavior in ovarian carcinoma cells, Cancer Res., 65, 2234, 10.1158/0008.5472.CAN-04-2781
Fang, 2004, Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells, J. Biol. Chem., 279, 9653, 10.1074/jbc.M306662200
Saunders, 2010, Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells, Free Radic. Biol. Med., 49, 2058, 10.1016/j.freeradbiomed.2010.10.663
Lu, 2002, Role of ether-linked lysophosphatidic acids in ovarian cancer cells, J. Lipid Res., 43, 463, 10.1016/S0022-2275(20)30153-X
Morris, 2005, Expression of cyclooxygenase-2 in advanced stage ovarian serous carcinoma: Correlation with tumor cell proliferation, apoptosis, angiogenesis, and survival, Am. J. Obstet. Gynecol., 192, 819, 10.1016/j.ajog.2004.10.587
Rask, 2006, Ovarian epithelial cancer: A role for PGE2-synthesis and signalling in malignant transformation and progression, Mol. Cancer, 5, 62, 10.1186/1476-4598-5-62
Heinonen, 1984, Prostaglandin and thromboxane production in ovarian cancer tissue, Gynecol. Obstet. Investig., 18, 225, 10.1159/000299085
Obermajer, 2011, PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment, Cancer Res., 71, 7463, 10.1158/0008-5472.CAN-11-2449
Daikoku, 2006, Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer, Cancer Res., 66, 2527, 10.1158/0008-5472.CAN-05-4063
Li, 2012, Effects of cyclooxygenase inhibitors in combination with taxol on expression of cyclin D1 and Ki-67 in a xenograft model of ovarian carcinoma, Int. J. Mol. Sci., 13, 9741, 10.3390/ijms13089741
Paweletz, 1989, Tumor-related angiogenesis, Crit. Rev. Oncol. Hematol., 9, 197, 10.1016/S1040-8428(89)80002-2
Potente, 2011, Basic and therapeutic aspects of angiogenesis, Cell, 146, 873, 10.1016/j.cell.2011.08.039
Burke, 2003, Hypoxia-induced gene expression in human macrophages: Implications for ischemic tissues and hypoxia-regulated gene therapy, Am. J. Pathol., 163, 1233, 10.1016/S0002-9440(10)63483-9
Murdoch, 2005, Hypoxia regulates macrophage functions in inflammation, J. Immunol., 175, 6257, 10.4049/jimmunol.175.10.6257
Cospedal, 1997, Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase, FEBS Lett., 420, 28, 10.1016/S0014-5793(97)01481-6
Gerber, 1998, Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation, J. Biol. Chem., 273, 30336, 10.1074/jbc.273.46.30336
Gerber, 1998, Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells, J. Biol. Chem., 273, 13313, 10.1074/jbc.273.21.13313
Xiao, 2011, TNF-α-induced VEGF and MMP-9 expression promotes hemorrhagic transformation in pituitary adenomas, Int. J. Mol. Sci., 12, 4165, 10.3390/ijms12064165
Liang, 2007, CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway, Biochem. Biophys. Res. Commun., 359, 716, 10.1016/j.bbrc.2007.05.182
Kryczek, 2005, CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers, Cancer Res., 65, 465, 10.1158/0008-5472.465.65.2
Motro, 1990, Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis, Proc. Natl. Acad. Sci. USA, 87, 3092, 10.1073/pnas.87.8.3092
Nilsson, 2005, Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine, Cancer Res., 65, 10794, 10.1158/0008-5472.CAN-05-0623
Scheller, 2006, Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: Role in inflammation and cancer, J. Leukocyte Biol., 80, 227, 10.1189/jlb.1105674
Koch, 1992, Interleukin-8 as a macrophage-derived mediator of angiogenesis, Science, 258, 1798, 10.1126/science.1281554
1999, Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention, J. Clin. Investig., 103, 1237, 10.1172/JCI6870
Lau, 2017, A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFα-TGFα-EGFR, Oncogene, 36, 3576, 10.1038/onc.2016.509
Scotton, 2002, Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer, Cancer Res., 62, 5930
Kulbe, 2005, The inflammatory cytokine tumor necrosis factor-α regulates chemokine receptor expression on ovarian cancer cells, Cancer Res., 65, 10355, 10.1158/0008-5472.CAN-05-0957
Kim, 2016, Malignant ascites enhances migratory and invasive properties of ovarian cancer cells with membrane bound IL-6R in vitro, Oncotarget, 7, 83148, 10.18632/oncotarget.13074
Wang, 2010, Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells, Cancer Lett., 295, 110, 10.1016/j.canlet.2010.02.019
Yung, 2018, GRO-α and IL-8 enhance ovarian cancer metastatic potential via the CXCR2-mediated TAK1/NFκB signaling cascade, Theranostics, 8, 1270, 10.7150/thno.22536
Cuello, 2001, Synergistic induction of apoptosis by the combination of trail and chemotherapy in chemoresistant ovarian cancer cells, Gynecol. Oncol., 81, 380, 10.1006/gyno.2001.6194
Song, 2009, Sp-1 and c-Myc mediate lysophosphatidic acid-induced expression of vascular endothelial growth factor in ovarian cancer cells via a hypoxia-inducible factor-1-independent mechanism, Clin. Cancer Res., 15, 492, 10.1158/1078-0432.CCR-08-1945
Pustilnik, 1999, Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells, Clin. Cancer Res., 5, 3704
Duffy, 1996, Proteases as prognostic markers in cancer, Clin. Cancer Res., 2, 613
Masferrer, 2000, Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors, Cancer Res., 60, 1306
Liu, 1998, NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells, Cancer Res., 58, 4245
Yeung, 2013, TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment, Cancer Res., 73, 5016, 10.1158/0008-5472.CAN-13-0023
Frankel, 1996, Peptide and lipid growth factors decrease cis-diamminedichloroplatinum-induced cell death in human ovarian cancer cells, Clin. Cancer Res., 2, 1307
Gao, 2015, LY2109761 enhances cisplatin antitumor activity in ovarian cancer cells, Int J. Clin. Exp. Pathol., 8, 4923
Hu, 2001, Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells, J. Natl. Cancer Inst., 93, 762, 10.1093/jnci/93.10.762
Forsythe, 1996, Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1, Mol. Cell. Biol., 16, 4604, 10.1128/MCB.16.9.4604
Tan, 2006, Mechanisms of transcoelomic metastasis in ovarian cancer, Lancet Oncol., 7, 925, 10.1016/S1470-2045(06)70939-1
Fidler, 2003, The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited, Nat. Rev. Cancer, 3, 453, 10.1038/nrc1098
Talmadge, 2010, AACR centennial series: The biology of cancer metastasis: Historical perspective, Cancer Res., 70, 5649, 10.1158/0008-5472.CAN-10-1040
Sumi, 2014, Ovulation and extra-ovarian origin of ovarian cancer, Sci. Rep., 4, 6116, 10.1038/srep06116
Russo, 2018, PTEN loss in the fallopian tube induces hyperplasia and ovarian tumor formation, Oncogene, 37, 1976, 10.1038/s41388-017-0097-8
Raftopoulou, 2004, Cell migration: Rho GTPases lead the way, Dev. Biol., 265, 23, 10.1016/j.ydbio.2003.06.003
Devreotes, 2015, Signaling networks that regulate cell migration, Cold Spring Harb Perspect. Biol., 7, a005959, 10.1101/cshperspect.a005959
Isaacsohn, 2007, Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice, Cancer Res., 67, 5708, 10.1158/0008-5472.CAN-06-4375
Wilkosz, 2005, A comparative study of the structure of human and murine greater omentum, Anat. Embryol., 209, 251, 10.1007/s00429-004-0446-6
Tang, J., Pulliam, N., Ozes, A., Buechlein, A., Ding, N., Keer, H., Rusch, D., O’Hagan, H., Stack, M.S., and Nephew, K.P. (2018). Epigenetic Targeting of Adipocytes Inhibits High-Grade Serous Ovarian Cancer Cell Migration and Invasion. Mol. Cancer Res.
Randall, 2017, Immunological Functions of the Omentum, Trends Immunol., 38, 526, 10.1016/j.it.2017.03.002
Gerber, 2006, Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth, Am. J. Pathol., 169, 1739, 10.2353/ajpath.2006.051222
Clark, 2013, Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models, Am. J. Pathol., 183, 576, 10.1016/j.ajpath.2013.04.023
Szatrowski, 1991, Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res., 51, 794
Wang, 2014, Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway, Oncol. Rep., 32, 2150, 10.3892/or.2014.3448
Kundu, 1995, Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma, Clin. Exp. Metast., 13, 16, 10.1007/BF00144014
Haskill, 1982, Mononuclear-cell infiltration in ovarian cancer. I. Inflammatory-cell infiltrates from tumour and ascites material, Br. J. Cancer, 45, 728, 10.1038/bjc.1982.114
Wang, 1988, Induction of monocyte migration by recombinant macrophage colony-stimulating factor, J. Immunol., 141, 575, 10.4049/jimmunol.141.2.575
Ramakrishnan, 1989, Constitutive production of macrophage colony-stimulating factor by human ovarian and breast cancer cell lines, J. Clin. Investig., 83, 921, 10.1172/JCI113977
Plante, 1994, Interleukin-6 level in serum and ascites as a prognostic factor in patients with epithelial ovarian cancer, Cancer, 73, 1882, 10.1002/1097-0142(19940401)73:7<1882::AID-CNCR2820730718>3.0.CO;2-R
Scambia, 1994, Interleukin-6 serum levels in patients with gynecological tumors, Int. J. Cancer, 57, 318, 10.1002/ijc.2910570305
Tempfer, 1997, Serum evaluation of interleukin 6 in ovarian cancer patients, Gynecol. Oncol., 66, 27, 10.1006/gyno.1997.4726
Isobe, A., Sawada, K., Kinose, Y., Ohyagi-Hara, C., Nakatsuka, E., Makino, H., Ogura, T., Mizuno, T., Suzuki, N., and Morii, E. (2015). Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS ONE, 10.
Fishman, 2001, Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells, Cancer Res., 61, 3194
Reiser, 1998, Lysophosphatidic acid-mediated signal-transduction pathways involved in the induction of the early-response genes prostaglandin G/H synthase-2 and Egr-1: A critical role for the mitogen-activated protein kinase p38 and for Rho proteins, Biochem. J., 330, 1107, 10.1042/bj3301107
Schwartz, 2001, Lysophospholipids increase interleukin-8 expression in ovarian cancer cells, Gynecol. Oncol., 81, 291, 10.1006/gyno.2001.6124
Yu, X., Zhang, Y., and Chen, H. (2016). LPA receptor 1 mediates LPA-induced ovarian cancer metastasis: An in vitro and in vivo study. BMC Cancer, 16.
Loizzi, V., Del Vecchio, V., Gargano, G., De Liso, M., Kardashi, A., Naglieri, E., Resta, L., Cicinelli, E., and Cormio, G. (2017). Biological Pathways Involved in Tumor Angiogenesis and Bevacizumab Based Anti-Angiogenic Therapy with Special References to Ovarian Cancer. Int. J. Mol. Sci., 18.
Puiffe, 2009, BMP-2 signaling in ovarian cancer and its association with poor prognosis, J. Ovarian Res., 2, 4, 10.1186/1757-2215-2-4
Ozols, 2005, Treatment goals in ovarian cancer, Int. J. Gynecol. Cancer, 15, 3, 10.1136/ijgc-00009577-200505001-00002
Koti, 2015, A distinct pre-existing inflammatory tumour microenvironment is associated with chemotherapy resistance in high-grade serous epithelial ovarian cancer, Br. J. Cancer, 112, 1215, 10.1038/bjc.2015.81
Stewart, 2007, Mechanisms of resistance to cisplatin and carboplatin, Crit Rev. Oncol Hematol, 63, 12, 10.1016/j.critrevonc.2007.02.001
Damiano, 1999, Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines, Blood, 93, 1658, 10.1182/blood.V93.5.1658
Meads, 2008, The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance, Clin. Cancer Res., 14, 2519, 10.1158/1078-0432.CCR-07-2223
Landowski, 1999, Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells, Immunity, 10, 105, 10.1016/S1074-7613(00)80011-4
Frassanito, 2001, Autocrine interleukin-6 production and highly malignant multiple myeloma: Relation with resistance to drug-induced apoptosis, Blood, 97, 483, 10.1182/blood.V97.2.483
Meads, 2009, Environment-mediated drug resistance: A major contributor to minimal residual disease, Nat. Rev. Cancer, 9, 665, 10.1038/nrc2714
Cohen, 2016, Reactive Oxygen Species and Serous Epithelial Ovarian Adenocarcinoma, Cancer Res. J., 4, 106, 10.11648/j.crj.20160406.13
Drori, 2006, Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators, Cell, 127, 397, 10.1016/j.cell.2006.09.024
Kim, 2017, PGC1α induced by reactive oxygen species contributes to chemoresistance of ovarian cancer cells, Oncotarget, 8, 60299, 10.18632/oncotarget.19140
Duan, 1999, Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: Analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype, Clin. Cancer Res., 5, 3445
Duan, 2006, Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer, Clin. Cancer Res., 12, 5055, 10.1158/1078-0432.CCR-06-0861
Abdollahi, 2003, Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3, Cancer Res., 63, 4521
Wiley, 1995, Identification and characterization of a new member of the TNF family that induces apoptosis, Immunity, 3, 673, 10.1016/1074-7613(95)90057-8
Walczak, 1999, Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo, Nat. Med., 5, 157, 10.1038/5517
Bristow, 1999, Altered expression of transforming growth factor-beta ligands and receptors in primary and recurrent ovarian carcinoma, Cancer, 85, 658, 10.1002/(SICI)1097-0142(19990201)85:3<658::AID-CNCR16>3.0.CO;2-M
Li, M., Balch, C., Montgomery, J.S., Jeong, M., Chung, J.H., Yan, P., Huang, T.H., Kim, S., and Nephew, K.P. (2009). Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med. Genom., 2.
Psyrri, 2005, Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer, Clin. Cancer Res., 11, 8637, 10.1158/1078-0432.CCR-05-1436
Crew, 1992, Mitogenic effects of epidermal growth factor and transforming growth factor-α on EGF-receptor positive human ovarian carcinoma cell lines, Eur. J. Cancer, 28, 337, 10.1016/S0959-8049(05)80049-8
Ferrandina, G., Ranelletti, F.O., Martinelli, E., Paglia, A., Zannoni, G.F., and Scambia, G. (2006). Cyclo-oxygenase-2 (Cox-2) expression and resistance to platinum versus platinum/paclitaxel containing chemotherapy in advanced ovarian cancer. BMC Cancer, 6.
Ferrandina, 2002, Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients, Ann. Oncol., 13, 1205, 10.1093/annonc/mdf207
Kim, 2012, Therapeutic strategies in epithelial ovarian cancer, J. Exp. Clin. Cancer Res., 31, 14, 10.1186/1756-9966-31-14
Ellis, 2008, VEGF-targeted therapy: Mechanisms of anti-tumour activity, Nat. Rev. Cancer, 8, 579, 10.1038/nrc2403
Aghajanian, 2012, OCEANS: A randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer, J. Clin. Oncol., 30, 2039, 10.1200/JCO.2012.42.0505
Burger, 2011, Incorporation of bevacizumab in the primary treatment of ovarian cancer, N. Engl. J. Med., 365, 2473, 10.1056/NEJMoa1104390
Perren, 2011, A phase 3 trial of bevacizumab in ovarian cancer, N. Engl. J. Med., 365, 2484, 10.1056/NEJMoa1103799
Brown, 2008, A clinical study assessing the tolerability and biological effects of infliximab, a TNF-α inhibitor, in patients with advanced cancer, Ann. Oncol., 19, 1340, 10.1093/annonc/mdn054
Guo, 2010, Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer, Clin. Cancer Res., 16, 5759, 10.1158/1078-0432.CCR-10-1095
Xu, 2013, Discovery of a novel orally active small-molecule gp130 inhibitor for the treatment of ovarian cancer, Mol. Cancer Ther., 12, 937, 10.1158/1535-7163.MCT-12-1082
Dijkgraaf, 2015, A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-α2b in patients with recurrent epithelial ovarian cancer, Ann. Oncol., 26, 2141, 10.1093/annonc/mdv309
Bhola, 2013, TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer, J. Clin. Investig., 123, 1348, 10.1172/JCI65416
Alsina-Sanchis, E., Figueras, A., Lahiguera, A., Gil-Martin, M., Pardo, B., Piulats, J.M., Marti, L., Ponce, J., Matias-Guiu, X., and Vidal, A. (2017). TGFbeta Controls Ovarian Cancer Cell Proliferation. Int. J. Mol. Sci., 18.
Secord, 2008, Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: A Gynecologic Oncology Group study, Gynecol. Oncol., 108, 493, 10.1016/j.ygyno.2007.11.029