The Role of Cardiac PET in Translating Basic Science into the Clinical Arena

Journal of Cardiovascular Translational Research - Tập 4 - Trang 425-436 - 2011
Paco E. Bravo1, Frank M. Bengel2
1Department of Radiology, Johns Hopkins University, Baltimore, USA
2Department of Nuclear Medicine, Medizinische Hochschule Hannover, Hannover, Germany

Tóm tắt

Non-invasive imaging has become fundamental in translating findings from basic science research into clinical applications. In this aspect, positron-emission tomography (PET) offers important advantages over other common imaging modalities like single-photon emission computed tomography, computed tomography, and magnetic resonance imaging (MRI), since PET provides superior detection sensitivity in the evaluation of different cardiovascular targets and pathways at the cellular and subcellular level, and because it is a well-established technique for absolute image quantification. The development and the introduction of dedicated small animal PET systems have greatly facilitated and contributed to advancements in the translation of novel radio-labeled compounds from experimental to clinical practice. The scope of the present article is to review the most relevant and successful PET applications in cardiovascular translational research.

Tài liệu tham khảo

Schelbert, H. R., Phelps, M. E., Hoffman, E. J., Huang, S. C., Selin, C. E., & Kuhl, D. E. (1979). Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. The American Journal of Cardiology, 43(2), 209–218. Gould, K. L., Schelbert, H. R., Phelps, M. E., & Hoffman, E. J. (1979). Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. V. Detection of 47 percent diameter coronary stenosis with intravenous nitrogen-13 ammonia and emission-computed tomography in intact dogs. The American Journal of Cardiology, 43(2), 200–208. Shah, A., Schelbert, H. R., Schwaiger, M., et al. (1985). Measurement of regional myocardial blood flow with N-13 ammonia and positron-emission tomography in intact dogs. Journal of the American College of Cardiology, 5(1), 92–100. Bergmann, S. R., Hack, S., Tewson, T., Welch, M. J., & Sobel, B. E. (1980). The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation, 61(1), 34–43. Selwyn, A. P., Allan, R. M., L'Abbate, A., et al. (1982). Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. The American Journal of Cardiology, 50(1), 112–121. Mullani, N. A., Goldstein, R. A., Gould, K. L., et al. (1983). Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. Journal of Nuclear Medicine, 24(10), 898–906. Herrero, P., Markham, J., Shelton, M. E., Weinheimer, C. J., & Bergmann, S. R. (1990). Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography exploration of a mathematical model. Circulation, 82(4), 1377–1386. Lautamaki, R., George, R. T., Kitagawa, K., et al. (2009). Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. European Journal of Nuclear Medicine and Molecular Imaging, 36(4), 576–586. Bergmann, S. R., Fox, K. A., Rand, A. L., et al. (1984). Quantification of regional myocardial blood flow in vivo with H215O. Circulation, 70(4), 724–733. Nandalur, K. R., Dwamena, B. A., Choudhri, A. F., Nandalur, S. R., Reddy, P., & Carlos, R. C. (2008). Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Academic Radiology, 15(4), 444–451. Underwood, S. R., Anagnostopoulos, C., Cerqueira, M., et al. (2004). Myocardial perfusion scintigraphy: the evidence. European Journal of Nuclear Medicine and Molecular Imaging, 31(2), 261–291. Czernin, J., Muller, P., Chan, S., et al. (1993). Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation, 88(1), 62–69. Uren, N. G., Melin, J. A., De Bruyne, B., Wijns, W., Baudhuin, T., & Camici, P. G. (1994). Relation between myocardial blood flow and the severity of coronary–artery stenosis. The New England Journal of Medicine, 330(25), 1782–1788. Di Carli, M., Czernin, J., Hoh, C. K., et al. (1995). Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation, 91(7), 1944–1951. Anagnostopoulos, C., Almonacid, A., El Fakhri, G., et al. (2008). Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. European Journal of Nuclear Medicine and Molecular Imaging, 35(9), 1593–1601. Herzog, B. A., Husmann, L., Valenta, I., et al. (2009). Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. Journal of the American College of Cardiology, 54(2), 150–156. Bengel, F. M., Higuchi, T., Javadi, M. S., & Lautamaki, R. (2009). Cardiac positron emission tomography. Journal of the American College of Cardiology, 54(1), 1–15. Nekolla, S. G., Reder, S., Saraste, A., et al. (2009). Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation, 119(17), 2333–2342. Tamarappoo, B., Nakazato, R., Shmilovich, H., et al. (2010). Comparison of myocardial stress perfusion defect assessment using 99mTc sestamibi SPECT vs BMS747158 PET. J Nucl Med, 51(2_MeetingAbstracts), 153. Meeting Abstracts, May 1, 2010. Rundqvist, B., Elam, M., Bergmann-Sverrisdottir, Y., Eisenhofer, G., & Friberg, P. (1997). Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation, 95(1), 169–175. Wecker, L., Crespo, L., Dunaway, G., Faingold, C., & Watts, S. (2009). Brody’s human pharmacology: molecular to clinical (5ed). Philadelphia, PA: Mosby/Elsevier. Rosenspire, K. C., Haka, M. S., Van Dort, M. E., et al. (1990). Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. Journal of Nuclear Medicine, 31(8), 1328–1334. DeGrado, T. R., Hutchins, G. D., Toorongian, S. A., Wieland, D. M., & Schwaiger, M. (1993). Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. Journal of Nuclear Medicine, 34(8), 1287–1293. Tipre, D. N., Fox, J. J., Holt, D. P., et al. (2008). In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. Journal of Nuclear Medicine, 49(7), 1189–1195. Raffel, D. M., Chen, W., Sherman, P. S., Gildersleeve, D. L., & Jung, Y. W. (2006). Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. Journal of Nuclear Medicine, 47(9), 1490–1496. Nguyen, N. T., DeGrado, T. R., Chakraborty, P., Wieland, D. M., & Schwaiger, M. (1997). Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. Journal of Nuclear Medicine, 38(5), 780–785. Rimoldi, O. E., Drake-Holland, A. J., Noble, M. I., & Camici, P. G. (2007). Basal and hyperaemic myocardial blood flow in regionally denervated canine hearts: an in vivo study with positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 34(2), 197–205. Luisi, A. J., Jr., Suzuki, G., Dekemp, R., et al. (2005). Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. Journal of Nuclear Medicine, 46(8), 1368–1374. Sasano, T., Abraham, M. R., Chang, K. C., et al. (2008). Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. Journal of the American College of Cardiology, 51(23), 2266–2275. Munch, G., Nguyen, N. T., Nekolla, S., et al. (2000). Evaluation of sympathetic nerve terminals with [(11)C]epinephrine and [(11)C]hydroxyephedrine and positron emission tomography. Circulation, 101(5), 516–523. Bravo, P., Lautamäki, R., Merrill, J., et al. (2010). Characterizing the biology of sympathetic nerve terminal regeneration in the human heart—a multi-tracer PET-CT study. Journal of Nuclear Medicine, 51(Supplement 2), 431. Schwaiger, M., Kalff, V., Rosenspire, K., et al. (1990). Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation, 82(2), 457–464. Schwaiger, M., Hutchins, G. D., Kalff, V., et al. (1991). Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. The Journal of Clinical Investigation, 87(5), 1681–1690. Uberfuhr, P., Ziegler, S., Schwaiblmair, M., Reichart, B., & Schwaiger, M. (2000). Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. European Journal of Cardiothoracic Surgery, 17(2), 161–168. Bengel, F. M., Ueberfuhr, P., Hesse, T., et al. (2002). Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation, 106(7), 831–835. Bengel, F. M., Ueberfuhr, P., Schiepel, N., Nekolla, S. G., Reichart, B., & Schwaiger, M. (2001). Effect of sympathetic reinnervation on cardiac performance after heart transplantation. The New England Journal of Medicine, 345(10), 731–738. Odaka, K., von Scheidt, W., Ziegler, S. I., et al. (2001). Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. Journal of Nuclear Medicine, 42(7), 1011–1016. Schwaiblmair, M., von Scheidt, W., Uberfuhr, P., et al. (1999). Functional significance of cardiac reinnervation in heart transplant recipients. The Journal of Heart and Lung Transplantation, 18(9), 838–845. Bengel, F. M., Ueberfuhr, P., Ziegler, S. I., Nekolla, S., Reichart, B., & Schwaiger, M. (1999). Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation, 99(14), 1866–1871. De Marco, T., Dae, M., Yuen-Green, M. S., et al. (1995). Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. Journal of the American College of Cardiology, 25(4), 927–931. Estorch, M., Camprecios, M., Flotats, A., et al. (1999). Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. Journal of Nuclear Medicine, 40(6), 911–916. Allman, K. C., Wieland, D. M., Muzik, O., Degrado, T. R., Wolfe, E. R., Jr., & Schwaiger, M. (1993). Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. Journal of the American College of Cardiology, 22(2), 368–375. Bulow, H. P., Stahl, F., Lauer, B., et al. (2003). Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nuclear Medicine Communications, 24(3), 233–239. Ungerer, M., Hartmann, F., Karoglan, M., et al. (1998). Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation, 97(2), 174–180. Pietila, M., Malminiemi, K., Ukkonen, H., et al. (2001). Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. European Journal of Nuclear Medicine, 28(3), 373–376. Allman, K. C., Stevens, M. J., Wieland, D. M., et al. (1993). Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. Journal of the American College of Cardiology, 22(5), 1425–1432. Stevens, M. J., Raffel, D. M., Allman, K. C., et al. (1998). Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation, 98(10), 961–968. Stevens, M. J., Raffel, D. M., Allman, K. C., Schwaiger, M., & Wieland, D. M. (1999). Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism, 48(1), 92–101. Maser, R. E., Mitchell, B. D., Vinik, A. I., & Freeman, R. (2003). The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care, 26(6), 1895–1901. Valensi, P., Sachs, R. N., Harfouche, B., et al. (2001). Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care, 24(2), 339–343. Lamoy, M., Bozek, J., Kavosi, M., et al. (2010). Cardiac imaging and uptake mechanism of 18F LMI1195, a novel PET cardiac neuronal imaging agent. Journal of Nuclear Medicine, 51(Supplement 2), 262. Taha, M., & Lopaschuk, G. D. (2007). Alterations in energy metabolism in cardiomyopathies. Annali Medici, 39(8), 594–607. Depre, C., Vanoverschelde, J. L., & Taegtmeyer, H. (1999). Glucose for the heart. Circulation, 99(4), 578–588. Gallagher, B. M., Ansari, A., Atkins, H., et al. (1977). Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. Journal of Nuclear Medicine, 18(10), 990–996. Krivokapich, J., Huang, S. C., Phelps, M. E., et al. (1982). Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose. The American Journal of Physiology, 243(6), H884–895. Ratib, O., Phelps, M. E., Huang, S. C., Henze, E., Selin, C. E., & Schelbert, H. R. (1982). Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. Journal of Nuclear Medicine, 23(7), 577–586. Marshall, R. C., Huang, S. C., Nash, W. W., & Phelps, M. E. (1983). Assessment of the [18F]fluorodeoxyglucose kinetic model in calculations of myocardial glucose metabolism during ischemia. Journal of Nuclear Medicine, 24(11), 1060–1064. Brown, M. A., Myears, D. W., & Bergmann, S. R. (1988). Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. Journal of the American College of Cardiology, 12(4), 1054–1063. Brown, M. A., Myears, D. W., & Bergmann, S. R. (1989). Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. Journal of Nuclear Medicine, 30(2), 187–193. Buck, A., Wolpers, H. G., Hutchins, G. D., et al. (1991). Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. Journal of Nuclear Medicine, 32(10), 1950–1957. Fox, K. A., Abendschein, D. R., Ambos, H. D., Sobel, B. E., & Bergmann, S. R. (1985). Efflux of metabolized and nonmetabolized fatty acid from canine myocardium Implications for quantifying myocardial metabolism tomographically. Circulation Research, 57(2), 232–243. Opie, L. H. (1976). Effects of regional ischemia on metabolism of glucose and fatty acids Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circulation Research, 38(5 Suppl 1), I52–74. Schwaiger, M., Schelbert, H. R., Ellison, D., et al. (1985). Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. Journal of the American College of Cardiology, 6(2), 336–347. Sochor, H., Schwaiger, M., Schelbert, H. R., et al. (1987). Relationship between Tl-201, Tc-99m (Sn) pyrophosphate and F-18 2-deoxyglucose uptake in ischemically injured dog myocardium. American Heart Journal, 114(5), 1066–1077. Wijns, W., Vatner, S. F., & Camici, P. G. (1998). Hibernating myocardium. The New England Journal of Medicine, 339(3), 173–181. Tarakji, K. G., Brunken, R., McCarthy, P. M., et al. (2006). Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation, 113(2), 230–237. Marshall, R. C., Tillisch, J. H., Phelps, M. E., et al. (1983). Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation, 67(4), 766–778. Baer, F. M., Voth, E., Deutsch, H. J., et al. (1996). Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. Journal of the American College of Cardiology, 28(1), 60–69. Carrel, T., Jenni, R., Haubold-Reuter, S., von Schulthess, G., Pasic, M., & Turina, M. (1992). Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. European Journal of Cardiothoracic Surgery, 6(9), 479–484. Depre, C., Vanoverschelde, J. L., Gerber, B., Borgers, M., Melin, J. A., & Dion, R. (1997). Correlation of functional recovery with myocardial blood flow, glucose uptake, and morphologic features in patients with chronic left ventricular ischemic dysfunction undergoing coronary artery bypass grafting. The Journal of Thoracic and Cardiovascular Surgery, 113(2), 371–378. Di Carli, M. F., Davidson, M., Little, R., et al. (1994). Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. The American Journal of Cardiology, 73(8), 527–533. Di Carli, M. F., Asgarzadie, F., Schelbert, H. R., et al. (1995). Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation, 92(12), 3436–3444. Eitzman, D., Al-Aouar, Z., Kanter, H. L., et al. (1992). Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. Journal of the American College of Cardiology, 20(3), 559–565. Knuuti, M. J., Saraste, M., Nuutila, P., et al. (1994). Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. American Heart Journal, 127(4 Pt 1), 785–796. Schinkel, A. F., Bax, J. J., Poldermans, D., Elhendy, A., Ferrari, R., & Rahimtoola, S. H. (2007). Hibernating myocardium: diagnosis and patient outcomes. Current Problems in Cardiology, 32(7), 375–410. Gropler, R. J., Geltman, E. M., Sampathkumaran, K., et al. (1992). Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. Journal of the American College of Cardiology, 20(3), 569–577. Gropler, R. J., Geltman, E. M., Sampathkumaran, K., et al. (1993). Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. Journal of the American College of Cardiology, 22(6), 1587–1597. Rubin, P. J., Lee, D. S., Davila-Roman, V. G., et al. (1996). Superiority of C-11 acetate compared with F-18 fluorodeoxyglucose in predicting myocardial functional recovery by positron emission tomography in patients with acute myocardial infarction. The American Journal of Cardiology, 78(11), 1230–1235. Higuchi, T., Bengel, F. M., Seidl, S., et al. (2008). Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovascular Research, 78(2), 395–403. Paradis, P., Dali-Youcef, N., Paradis, F. W., Thibault, G., & Nemer, M. (2000). Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 931–936. Harada, K., Sugaya, T., Murakami, K., Yazaki, Y., & Komuro, I. (1999). Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation, 100(20), 2093–2099. Higuchi, T., Fukushima, K., Xia, J., et al. (2010). Use of the AT1R ligand C-11 KR31173 for monitoring of the myocardial effect of drugs inhibiting the renin-angiotensin system after myocardial infarction. Journal of Nuclear Medicine, 51(Supplement 2), 268. Breyholz, H. J., Wagner, S., Levkau, B., Schober, O., Schafers, M., & Kopka, K. (2007). A 18F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix-metalloproteinase activity in vivo. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 51(1), 24–32.