The Role of Bone Remodelling in Maintaining and Restoring Bone Health: an Overview

Springer Science and Business Media LLC - Tập 15 - Trang 90-97 - 2017
E. Raubenheimer1,2, H. Miniggio3, L. Lemmer1, W. van Heerden2
1AMPATH Histopathology Laboratory, Pretoria, South Africa
2Department of Oral Pathology and Oral Biology, University of Pretoria, Pretoria, South Africa
3Oral Biology, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa

Tóm tắt

Autocrine, paracrine and endocrine signals regulate the activities of cells involved in skeletal remodelling. Mapping of the metabolic pathways of bone cells and characterization of their chemical mediators have prompted the pharmaceutical industry to develop patented drugs and auto-antibodies which modulate the anabolic and catabolic activities in bone. This overview provides insight into the metabolic pathways which govern bone cells involved in bone metabolism as a framework for understanding the progress made in the pharmaceutical manipulation of skeletal health.

Tài liệu tham khảo

Bellido T. Osteocyte apoptosis induce bone resorption and impairs the skeletal response to weightlessness. BoneKEy-osteovision. 2007;4:252–6. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20. Street J, Bao M, de Guzman L. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A. 2002;99:9656–61. Park JH, Song HI, Rho JM. Parathyroid hormone (1-34) augments angiopoietin-1 expression in human osteoblast-like cells. Exp Clin Endocrinol Diabetes. 2006;114:438–43. Jilka RL, Weinstein RS, Bellido T, Robertson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999;104:439–46. Boyce BF, Xing L, Jilka RL, Bellido T, Weinstein RS, Parfitt AM, Manolagas SC. Apoptosis of bone cells. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology. San Diego: Academic Press; 2002. p. 151–68. Bellido T. Osteocyte-driven bone remodelling. Calcif Tissue Int. 2014;94:25–34. Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, Reeve J, Skerry TM, Lanyon LE. Mechanical loading: biphasic osteocyte survival and the targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284:C934–43. Hume DA, MacDonald KPA. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2012;119:1810–20. Jilka RL, O’Brien CA, Bartell SM. Continuous elevation of PTH increases number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J Bone Miner Res. 2010;25:2427–37. Nakashima T, Hayashi M, Fukunaga T, Kurata K, OhohoraM FJQ, Bonewald LF, Wutz A, Wagner EF, Penningen JM, Takayanagi H. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4. Bellido T, Saini V, Divierti P. Effects of PTH on osteocyte function. Bone. 2013;54:250–7. Divierti P, Inomata N, Singh R, Juppner H, Binghurst FR. Receptors for the carboxyl-terminal region of pth(1-84) are highly expressed in osteocyte cells. Endocrinol. 2001;142:916–25. Tawfeek H, Bedi B, Li JY. Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS One. 2010; doi:10.1371/journal.pone.0012290. Weir EC, Horowitz MC, Baron R. Macrophage colony-stimulating factor release and receptor expression in bone cells. J Bone Min Res. 1993;8:1507–18. Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, Wysolmerski J, Bonewald LF. Demonstration of osteocyte perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27:1018–29. Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kniessel M. Osteocyte Wnr/beta catenin signalling is required for normal bone homeostasis. Mol Cell Biol. 2010;30:3071–85. Glass DA, Bialek P, Ahn JD. Cananonical Wnt signalling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64. Lacey DL, Timms E, Tan HL. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76. Kikuta J, Kawamura S, Okiji F. Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D. Proc Natl Acad Sci U S A. 2013;110:7009–13. Boyce BF. Advances in the regulation of osteoclasts and osteoblast functions. J Dent Res. 2013;92:860–7. Kogawa M, Findlay DM, Anderson PH. Mutation of osteoclastic migration by metabolism of 25OH-vitamin D3. J Steroid Biochem Mol Biol. 2013;136:59–61. Hayman AR. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/ immune cell dichotomy. Autoimmunity. 2008;41:218–23. Gordon JA, Tye CE, Sampaio AV. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone. 2007;41:462–73. Lee NK, Sowa H, Hinoi E. Endocrine regulation of energy by the skeleton. Cell. 2007;130:456–69. Ferron M, Wei J, Yoshizawa T. Insulin signalling in osteoblasts integrates bone remodelling and energy metabolism. Cell. 2010;142:296–308. Weitzman MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica. 2013;2013:125705. Vitale RF, Pereira CS, Alves AL. TNF-R2 expression in acquired middle ear cholesteatoma. Braz J Otorhinolaryngol. 2011;77:531–6. Jurisic V, Colic S, Jurisic M. The inflammatory radicular cysts have higher concentration of tnf alpha in comparison to odontogenic keratocysts (odontogenic tumour). Acta Med (Hradec Kralove). 2007;50:233–8. Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signalling in bone remodelling. J Clin Invest. 2014;124:466–72. Sacchetti B, Funari A, Michienzi S. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324–36. Chen G, Deng C, Li Y-P. TGF-β and BMP signalling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272–88. Winkler DG, Sutherland MK, Georgehegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Sthaeling-Hamilton K, Appelby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:626706276. Moester MJ, Papapoulos SE, Löwik CW. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010;87:99–107. Van Bezooijen RL, Roelen BA, Visser A, Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW. Sclerostin is an osteocyte expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199:805–14. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL. Chronic elevation of PTH in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinol. 2005;146:4577–83. Huang C, Ogawa R. Mechanotransduction in bone repair and regeneration. FASEB J. 2010;24:3625–32. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MJ, Mantila SM. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866–75. Ishijima M, Tsuji K, Rittling SR. Osteopontin is required for mechanical stress-dependent signals to bone marrow cells. J Endocrinol. 2007;193:235–43. Hinoi E. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008;183:1235–42. Ducy P, Karsenty G. Review. The two faces of serotonin in bone biology. J Cell Biol. 2010;191:7–13. Guntur AR, Rosen CJ. IGF-1 regulation of key signalling pathways in bone. BoneKEy Reports. 2013; doi:10.1038/bonekey.2013.171. Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N. Overexpression of fibroblast growth factor 23 suppresses matrix mineralization in vitro. J Bone Miner Res. 2008;23:939–48. Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schuler C, Erben RG, Lanske B. Genetic evidence of serum phosphate-independent functions of FGF-23 in bone. PLoS Genet. 2008;4:e1000154. Graham S, Gamie Z, Polyzois I. Prostaglandin EP2 and EP4 receptor agonists in bone formation and bone healing: in vivo and in vitro evidence. Expert Opin Investig Drugs. 2009;18:746–66. Kousteni S, Bellido T, Plotkin LI, O’Brien CA, et al. Nongenotropic, sex-nonspecific signaling through the estrogen and androgen receptors: dissociation from transcriptional activity. Cell. 2001;104:719–30. Mödder UI, Roforth MM, Hoey K. Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal women. Bone. 2011;49:202–7. Weinstein RS, Jilka RL, Am P, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282:27285–92. Cummings SR, San Martin J, McClung MR. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–62. Rogers MJ, Gordon S, Benford HL. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88:2961–78. Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone. 2011;49:50–5. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanisms of action and role in clinical practice. Myo Clin Proc. 2008;83:1032–45. Crandall CJ, Newberry SJ, Gellard WJ, Diamant A. Treatment to prevent fractures in men and women with low bone density or osteoporosis: update of a 2007 report, comparative effectiveness 2012; http://www.effectivehealthcare.ahrq.gov. Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc. 2009;84:632–8. Singer FR, Bone HG, Hosking DJ, Lyles KW, Murad MH, Reid IR, Siris ES. Paget’s disease of bone: an endocrinological society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:4408. Migliaccio S, Barma M, Spera G. The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators), and parathyroid hormone on bone remodelling in osteoporosis. Clin Interv Aging. 2007;2:55–64. Gennari L, Merlotti D, Nuti R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in postmenopausal women: focus on lasofoxifene. Clin Interven Aging. 2010;5:19–21. Brőmme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences. Expert Opin Drug Discov. 2016;22:1–16. Cheng ZW, Huang Z, Kuzuya M, Okumura K, Murohara T. Cystein protease cathepsin in atherosclerosis-based vascular disease and its complications. Hypertension. 2011;58:978–86. Cranney A, Welch V, Adachi J, Homic J, et al. Calcitonin for preventing and treating corticosteroid-induced osteoporosis. Cochrane Database Syst Rev 2000, Issue 1. Art. No: CD001983. doi: 10.1002/14651858.CD001983. Key LL, Rodriguiz RM, Willi SM, Wright NM, et al. Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med. 1995;332:1594–9. Neer RM, Arnauld JR, Zanchetta JR. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. New Engl J Med. 2001;344:1434–41. Cosman F, Crittenden DB, Jonathen D, et al. Romosozumab treatment in postmenopausal women with osteoporosis. New Engl J Med. 2016;375:1532–43. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40:S5–8. Fonseca JE, Brandi ML. Mechanism of action of strontium ranelate: what are the facts. Clin Cases Min Bone Metab. 2010;7:17–8. Meneur PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, Cormier C, Isaia G, Badurski J, Wark JD, Collette J, Reginster JY. Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int. 2009;10:1663–73. Kaufman JM, Audran M, Bianchi G, Braga V, Diaz-Curiel M, Francis RM. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab. 2013;98:592–601. Wang C, Zhang BH, Zhang H, He JW. The A242T mutation in the low-density lipoprotein receptor-related protein 5 gene in one Chinese family with osteosclerosis. Intern Med. 2013;52:187–92. Crockett JC, Mellis DJ, Scott DI, Helfrich MH. New knowledge on critical osteoclast formation and activation pathways from study on rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporosis Int. 2011;22:1–20. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial osteolysis. Nat Genet. 2000;24:45–8. Evans CH. Gene delivery to bone. Adv Drug Deliv Rev. 2012;64:1331–41. Kim JH, Liu X, Wang J, Chen X, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 2013;5:13–31. Rossini M, Gatti D, Adami S. Involvement of Wnt/β-catenin signalling in the treatment of osteoporosis. Calci Tissue Int. 2013;93:121–32. Courvoisier A, Sailhan F, Laffenetre O, Obert L. Bone morphogenetic protein in orthopaedic surgery: can we legitimate its off-label use? Int Orthop. 2014;38:2601–5. Jennisen HP. Accelerated and improved osseointegration of implants biocoated with bone morphogenetic protein 2 (BMP-2). Ann N Y Acad Sci. 2002;961:139–42. Raubenheimer EJ, Noffke CEE, Boy SC. Osseous dysplasia with gross jaw expansion: a review of 18 lesions. Head Neck Pathol. 2016;10:437–43.