The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mazerbourg, 2006, Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands, Hum. Reprod. Update, 12, 373, 10.1093/humupd/dml014
Cho, 2001, Intracellular BMP signaling regulation in vertebrates: Pathway or network?, Dev. Biol., 239, 1, 10.1006/dbio.2001.0388
Bragdon, 2011, Bone morphogenetic proteins: A critical review, Cell. Signal., 23, 609, 10.1016/j.cellsig.2010.10.003
Miyazono, 2005, BMP receptor signaling: Transcriptional targets, regulation of signals, and signaling cross-talk, Cytokine Growth Factor Rev., 16, 251, 10.1016/j.cytogfr.2005.01.009
Xiao, 2007, Bone morphogenetic protein, Biochem. Biophys. Res. Commun., 362, 550, 10.1016/j.bbrc.2007.08.045
Chen, 1998, Differential Roles for Bone Morphogenetic Protein (BMP) Receptor Type IB and IA in Differentiation and Specification of Mesenchymal Precursor Cells to Osteoblast and Adipocyte Lineages, J. Cell Biol., 142, 295, 10.1083/jcb.142.1.295
Chen, 2012, TGF-beta and BMP signaling in osteoblast differentiation and bone formation, Int. J. Biol. Sci., 8, 272, 10.7150/ijbs.2929
Takada, I., Kouzmenko, A.P., and Kato, S. (2010). PPAR-gamma Signaling Crosstalk in Mesenchymal Stem Cells. PPAR Res., 2010.
Hata, 2003, Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis, Mol. Biol. Cell., 14, 545, 10.1091/mbc.e02-06-0356
Kang, 2009, A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells, Stem Cells Dev., 18, 545, 10.1089/scd.2008.0130
Dorman, 2012, In vitro effects of bmp-2, bmp-7, and bmp-13 on proliferation and differentation of mouse mesenchymal stem cells, Biomed. Sci. Instrum., 48, 81
Reid, 1982, Primary non-specific ulcer of the small intestine, J. R. Coll. Surg. Edinb., 27, 228
Varkey, 2006, In vitro osteogenic response of rat bone marrow cells to bFGF and BMP-2 treatments, Clin. Orthop. Relat. Res., 443, 113, 10.1097/01.blo.0000200236.84189.87
Granjeiro, 2005, Bone morphogenetic proteins: From structure to clinical use, Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol., 38, 1463, 10.1590/S0100-879X2005001000003
Qian, 2013, BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis, Proc. Natl. Acad. Sci. USA, 110, E798, 10.1073/pnas.1215236110
Friedrichs, M., Wirsdoerfer, F., Flohe, S.B., Schneider, S., Wuelling, M., and Vortkamp, A. (2011). BMP signaling balances proliferation and differentiation of muscle satellite cell descendants. BMC Cell Biol., 12.
Segklia, A., Seuntjens, E., Elkouris, M., Tsalavos, S., Stappers, E., Mitsiadis, T.A., Huylebroeck, D., Remboutsika, E., and Graf, D. (2012). Bmp7 regulates the survival, proliferation, and neurogenic properties of neural progenitor cells during corticogenesis in the mouse. PLoS ONE, 7.
Zhang, 1996, Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development, Development, 122, 2977, 10.1242/dev.122.10.2977
Winnier, 1995, Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse, Genes Dev., 9, 2105, 10.1101/gad.9.17.2105
Chen, 2004, BMP10 is essential for maintaining cardiac growth during murine cardiogenesis, Development, 131, 2219, 10.1242/dev.01094
Dudley, 1995, A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye, Genes Dev., 9, 2795, 10.1101/gad.9.22.2795
McPherron, 1999, Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11, Nat. Genet., 22, 260, 10.1038/10320
Komatsu, 2007, BMP type I receptor ALK2 is essential for proper patterning at late gastrulation during mouse embryogenesis, Dev. Dyn., 236, 512, 10.1002/dvdy.21021
Beppu, 2000, BMP type II receptor is required for gastrulation and early development of mouse embryos, Dev. Biol., 221, 249, 10.1006/dbio.2000.9670
Mishina, 1995, Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis, Genes Dev., 9, 3027, 10.1101/gad.9.24.3027
Sirard, 1998, The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo, Genes Dev., 12, 107, 10.1101/gad.12.1.107
Chang, 1999, Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects, Development, 126, 1631, 10.1242/dev.126.8.1631
Lechleider, 2001, Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion, Dev. Biol., 240, 157, 10.1006/dbio.2001.0469
Chen, 2009, Smad7 is required for the development and function of the heart, J. Biol. Chem., 284, 292, 10.1074/jbc.M807233200
Goldman, 2009, BMP4 regulates the hematopoietic stem cell niche, Blood, 114, 4393, 10.1182/blood-2009-02-206433
Ma, 2005, Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning, Development, 132, 5601, 10.1242/dev.02156
Tabin, 2006, Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field, Dev. Biol., 295, 580, 10.1016/j.ydbio.2006.03.043
Dimitriou, 2005, Current concepts of molecular aspects of bone healing, Injury, 36, 1392, 10.1016/j.injury.2005.07.019
Carreira, 2014, Bone Morphogenetic Proteins: Structure, biological function and therapeutic applications, Arch. Biochem. Biophys., 561, 64, 10.1016/j.abb.2014.07.011
Reddi, A.H. (2001). Bone morphogenetic proteins: From basic science to clinical applications. J. Bone Jt. Surg. Am. Vol., 83.
Geesink, 1999, Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect, J. Bone Jt. Surg. British Vol., 81, 710, 10.1302/0301-620X.81B4.0810710
Friedlaender, 2001, Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions, J. Bone Jt. Surg. Am. Vol., 83, 151, 10.2106/00004623-200100002-00010
Cummings, 2002, Epidemiology and outcomes of osteoporotic fractures, Lancet, 359, 1761, 10.1016/S0140-6736(02)08657-9
Giannoudis, 2007, Fracture healing in osteoporotic fractures: Is it really different? A basic science perspective, Injury, 38, 90, 10.1016/j.injury.2007.02.014
Qaseem, 2008, Pharmacologic treatment of low bone density or osteoporosis to prevent fractures: A clinical practice guideline from the American College of Physicians, Ann. Intern. Med., 149, 404, 10.7326/0003-4819-149-6-200809160-00007
Nakase, 2006, Potential roles of bone morphogenetic proteins (BMPs) in skeletal repair and regeneration, J. Bone Miner. Metab., 24, 425, 10.1007/s00774-006-0718-8
Yamashita, 1994, Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4, J. Biol. Chem., 269, 16985, 10.1016/S0021-9258(17)32506-1
Hahn, 1992, A bone morphogenetic protein subfamily: Chromosomal localization of human genes for BMP5, BMP6, and BMP7, Genomics, 14, 759, 10.1016/S0888-7543(05)80181-8
Nonner, 2001, Bone morphogenetic proteins (BMP6 and BMP7) enhance the protective effect of neurotrophins on cultured septal cholinergic neurons during hypoglycemia, J. Neurochem., 77, 691, 10.1046/j.1471-4159.2001.00273.x
Solloway, 1998, Mice lacking Bmp6 function, Dev. Genet., 22, 321, 10.1002/(SICI)1520-6408(1998)22:4<321::AID-DVG3>3.0.CO;2-8
Zhang, 2006, Inhibition of Bone Morphogenetic Protein 1 by Native and Altered Forms of α2-Macroglobulin, J. Biol. Chem., 281, 39096, 10.1074/jbc.M601362200
Luo, 1995, BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning, Genes Dev., 9, 2808, 10.1101/gad.9.22.2808
Halcsik, 2010, Expression, purification, bioactivity, and partial characterization of a recombinant human bone morphogenetic protein-7 produced in human 293T cells, Mol. Biotechnol., 46, 118, 10.1007/s12033-010-9287-0
Mills, 2008, Expression and characterization of a human BMP-7 variant with improved biochemical properties, Protein Expr. Purif., 57, 312, 10.1016/j.pep.2007.09.016
Sieber, 2009, Recent advances in BMP receptor signaling, Cytokine Growth Factor Rev., 20, 343, 10.1016/j.cytogfr.2009.10.007
Little, 2009, Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis, Nat. Cell. Biol., 11, 637, 10.1038/ncb1870
Aono, 1995, Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer, Biochem. Biophys. Res. Commun., 210, 670, 10.1006/bbrc.1995.1712
Hazama, 1995, Efficient expression of a heterodimer of bone morphogenetic protein subunits using a baculovirus expression system, Biochem. Biophys. Res. Commun., 209, 859, 10.1006/bbrc.1995.1578
Israel, 1996, Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo, Growth Factors, 13, 291, 10.3109/08977199609003229
Dimitriou, 2005, Application of recombinant BMP-7 on persistent upper and lower limb non-unions, Injury, 36, 51, 10.1016/j.injury.2005.10.010
Nishimatsu, 1998, Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos, Mech. Dev., 74, 75, 10.1016/S0925-4773(98)00070-7
Schmid, 2000, Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation, Development, 127, 957, 10.1242/dev.127.5.957
Suzuki, 1997, Mesoderm induction by BMP-4 and -7 heterodimers, Biochem. Biophys. Res. Commun., 232, 153, 10.1006/bbrc.1997.6219
Kim, H.-S., Neugebauer, J., McKnite, A., Tilak, A., and Christian, J.L. (2019). BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. BioRxiv, 686758.
Vaccaro, 2008, The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: Minimum 4-year follow-up of a pilot study, Spine J., 8, 457, 10.1016/j.spinee.2007.03.012
Boon, 2011, Bone morphogenetic protein 7: A broad-spectrum growth factor with multiple target therapeutic potency, Cytokine Growth Factor Rev., 22, 221, 10.1016/j.cytogfr.2011.08.001
Carreira, 2014, Bone morphogenetic proteins: Facts, challenges, and future perspectives, J. Dent. Res., 93, 335, 10.1177/0022034513518561
Rocher, 2012, Bone morphogenetic protein 7 polarizes THP-1 cells into M2 macrophages, Can. J. Physiol. Pharmacol., 90, 947, 10.1139/y2012-102
Cecchi, 2015, Bone morphogenetic protein-7: Review of signalling and efficacy in fracture healing, J. Orthop. Translat., 4, 28, 10.1016/j.jot.2015.08.001
Singla, D.K., Singla, R., and Wang, J. (2016). BMP-7 Treatment Increases M2 Macrophage Differentiation and Reduces Inflammation and Plaque Formation in Apo E-/- Mice. PLoS ONE, 11.
Rocher, C., and Singla, D.K. (2013). SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages. PLoS ONE, 8.
Shoulders, 2019, Macrophage depletion by clodronate attenuates bone morphogenetic protein-7 induced M2 macrophage differentiation and improved systolic blood velocity in atherosclerosis, Transl. Res., 203, 1, 10.1016/j.trsl.2018.07.006
Chattopadhyay, 2017, Bone morphogenetic protein-7 (BMP-7) augments insulin sensitivity in mice with type II diabetes mellitus by potentiating PI3K/AKT pathway, Biofactors, 43, 195, 10.1002/biof.1334
Rosenzweig, 1995, Cloning and characterization of a human type II receptor for bone morphogenetic proteins, Proc. Natl. Acad. Sci. USA, 92, 7632, 10.1073/pnas.92.17.7632
Miyazono, 2010, Bone morphogenetic protein receptors and signal transduction, J. Biochem., 147, 35, 10.1093/jb/mvp148
Ulsamer, 2008, BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38, J. Biol. Chem., 283, 3816, 10.1074/jbc.M704724200
Franceschi, 2003, Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways, J. Cell. Biochem., 88, 446, 10.1002/jcb.10369
Lee, 2002, Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein, Oncogene, 21, 7156, 10.1038/sj.onc.1205937
Morrell, 2016, Targeting BMP signalling in cardiovascular disease and anaemia, Nat. Rev. Cardiol., 13, 106, 10.1038/nrcardio.2015.156
Feng, 2005, Specificity and versatility in tgf-beta signaling through Smads, Annu. Rev. Cell. Dev. Biol., 21, 659, 10.1146/annurev.cellbio.21.022404.142018
Wu, 2016, TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease, Bone Res., 4, 16009, 10.1038/boneres.2016.9
Hoodless, 1998, Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2, J. Biol. Chem., 273, 25628, 10.1074/jbc.273.40.25628
Pal, 2006, Role of smad- and wnt-dependent pathways in embryonic cardiac development, Stem Cells Dev., 15, 29, 10.1089/scd.2006.15.29
Ebisawa, 1999, Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation, J. Cell Sci., 112, 3519, 10.1242/jcs.112.20.3519
Lavery, 2009, New insights into BMP-7 mediated osteoblastic differentiation of primary human mesenchymal stem cells, Bone, 45, 27, 10.1016/j.bone.2009.03.656
Yeh, 2002, Osteogenic protein-1 (OP-1, BMP-7) induces osteoblastic cell differentiation of the pluripotent mesenchymal cell line C2C12, J. Cell Biochem., 87, 292, 10.1002/jcb.10315
Zhang, 2005, BMP signaling and stem cell regulation, Dev. Biol., 284, 1, 10.1016/j.ydbio.2005.05.009
Herpin, 2007, Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways results in tightly regulated cell-specific outcomes, FEBS J., 274, 2977, 10.1111/j.1742-4658.2007.05840.x
Yamaguchi, 1999, XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway, EMBO J., 18, 179, 10.1093/emboj/18.1.179
Chen, 2014, BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells, PLoS ONE, 9, e112636, 10.1371/journal.pone.0112636
Yeh, 2009, The antioxidative effect of bone morphogenetic protein-7 against high glucose-induced oxidative stress in mesangial cells, Biochem. Biophys. Res. Commun., 382, 292, 10.1016/j.bbrc.2009.03.011
Yeh, 2010, Protein kinase D mediates the synergistic effects of BMP-7 and IGF-I on osteoblastic cell differentiation, Growth Factors, 28, 318, 10.3109/08977191003766874
Giese, 2016, An investigation of BMP-7 mediated alterations to BMP signalling components in human tenocyte-like cells, Sci. Rep., 6, 29703, 10.1038/srep29703
Hu, 2004, p38MAPK acts in the BMP7-dependent stimulatory pathway during epithelial cell morphogenesis and is regulated by Smad1, J. Biol. Chem., 279, 12051, 10.1074/jbc.M310526200
Blank, 2009, BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism, Development, 136, 3557, 10.1242/dev.036335
Sovershaev, 2015, BMP-7 induces TF expression in human monocytes by increasing F3 transcriptional activity, Thromb. Res., 135, 398, 10.1016/j.thromres.2014.11.031
Shimizu, 2012, Bone morphogenetic protein (BMP)-4 and BMP-7 suppress granulosa cell apoptosis via different pathways: BMP-4 via PI3K/PDK-1/Akt and BMP-7 via PI3K/PDK-1/PKC, Biochem. Biophys. Res. Commun., 417, 869, 10.1016/j.bbrc.2011.12.064
Weichhart, 2008, The PI3K/Akt/mTOR pathway in innate immune cells: Emerging therapeutic applications, Ann. Rheum. Dis., 67, 70, 10.1136/ard.2008.098459
Rauh, 2005, SHIP represses the generation of alternatively activated macrophages, Immunity, 23, 361, 10.1016/j.immuni.2005.09.003
Gazzerro, 1998, Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts, J. Clin. Investig., 102, 2106, 10.1172/JCI3459
Dionne, 2001, Mutation and analysis of Dan, the founding member of the Dan family of transforming growth factor beta antagonists, Mol. Cell. Biol., 21, 636, 10.1128/MCB.21.2.636-643.2001
Ideno, 2009, Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro, Exp. Cell. Res., 315, 474, 10.1016/j.yexcr.2008.11.019
Topol, 2000, Biosynthesis, post-translation modification, and functional characterization of Drm/Gremlin, J. Biol. Chem., 275, 8785, 10.1074/jbc.275.12.8785
Sudo, 2004, Protein related to DAN and cerberus is a bone morphogenetic protein antagonist that participates in ovarian paracrine regulation, J. Biol. Chem., 279, 23134, 10.1074/jbc.M402376200
Balemans, 2002, Extracellular regulation of BMP signaling in vertebrates: A cocktail of modulators, Dev. Biol., 250, 231, 10.1006/dbio.2002.0779
Rahman, 2015, TGF-beta/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation, Bone Res., 3, 15005, 10.1038/boneres.2015.5
Itoh, 2007, Negative regulation of TGF-beta receptor/Smad signal transduction, Curr. Opin. Cell Biol., 19, 176, 10.1016/j.ceb.2007.02.015
Knockaert, 2006, Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling, Proc. Natl. Acad. Sci. USA, 103, 11940, 10.1073/pnas.0605133103
Heldin, 2012, Role of Smads in TGFbeta signaling, Cell Tissue Res., 347, 21, 10.1007/s00441-011-1190-x
Larman, 2009, Chordin-like 1 and twisted gastrulation 1 regulate BMP signaling following kidney injury, J. Am. Soc. Nephrol., 20, 1020, 10.1681/ASN.2008070768
Matzuk, 1995, Multiple defects and perinatal death in mice deficient in follistatin, Nature, 374, 360, 10.1038/374360a0
Amthor, 2002, Follistatin regulates bone morphogenetic protein-7 (BMP-7) activity to stimulate embryonic muscle growth, Dev. Biol., 243, 115, 10.1006/dbio.2001.0555
Li, 2018, Gremlin2 Regulates the Differentiation and Function of Cardiac Progenitor Cells via the Notch Signaling Pathway, Cell. Physiol. Biochem., 47, 579, 10.1159/000490012
Sasai, 1995, Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus, Nature, 377, 757, 10.1038/377757a0
Bachiller, 2000, The organizer factors Chordin and Noggin are required for mouse forebrain development, Nature, 403, 658, 10.1038/35001072
Wijgerde, 2005, Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse, Dev. Biol., 286, 149, 10.1016/j.ydbio.2005.07.016
Coffinier, 2001, Neuralin-1 is a novel Chordin-related molecule expressed in the mouse neural plate, Mech. Dev., 100, 119, 10.1016/S0925-4773(00)00507-4
Nakayama, 2001, A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages, Dev. Biol., 232, 372, 10.1006/dbio.2001.0200
Sakuta, 2001, Ventroptin: A BMP-4 antagonist expressed in a double-gradient pattern in the retina, Science, 293, 111, 10.1126/science.1058379
Ikeya, 2006, Essential pro-Bmp roles of crossveinless 2 in mouse organogenesis, Development, 133, 4463, 10.1242/dev.02647
Rentzsch, 2006, Crossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafish gastrulation, Development, 133, 801, 10.1242/dev.02250
Zakin, 2008, Development of the vertebral morphogenetic field in the mouse: Interactions between Crossveinless-2 and Twisted Gastrulation, Dev. Biol., 323, 6, 10.1016/j.ydbio.2008.08.019
Yao, 2012, Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium, Blood, 119, 5037, 10.1182/blood-2011-10-385906
Reichert, 2013, A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border, Development, 140, 4435, 10.1242/dev.098707
Dyer, 2014, BMPER-induced BMP signaling promotes coronary artery remodeling, Dev. Biol., 386, 385, 10.1016/j.ydbio.2013.12.019
Lin, 2005, Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease, Nat. Med., 11, 387, 10.1038/nm1217
Soofi, 2013, Kielin/chordin-like protein attenuates both acute and chronic renal injury, J. Am. Soc. Nephrol., 24, 897, 10.1681/ASN.2012070759
Ivkovic, 2003, Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development, Development, 130, 2779, 10.1242/dev.00505
Maeda, 2009, CCN family 2/connective tissue growth factor modulates BMP signalling as a signal conductor, which action regulates the proliferation and differentiation of chondrocytes, J. Biochem., 145, 207, 10.1093/jb/mvn159
Mundy, 2014, Connective tissue growth factor (CTGF/CCN2) negatively regulates BMP-2 induced osteoblast differentiation and signaling, J. Cell. Physiol., 229, 672, 10.1002/jcp.24491
Hansson, 2005, Inflammation, atherosclerosis, and coronary artery disease, N. Engl. J. Med., 352, 1685, 10.1056/NEJMra043430
Bentzon, 2014, Mechanisms of plaque formation and rupture, Circ. Res., 114, 1852, 10.1161/CIRCRESAHA.114.302721
Parthasarathy, S. (1994). Modified Lipoproteins in the Pathogenesis of Atherosclerosis, RG Landes Co.
Steinberg, 2005, Thematic review series: The pathogenesis of atherosclerosis: An interpretive history of the cholesterol controversy, part III: Mechanistically defining the role of hyperlipidemia, J. Lipid. Res., 46, 2037, 10.1194/jlr.R500010-JLR200
Galkina, 2007, Leukocyte influx in atherosclerosis, Curr. Drug Targets, 8, 1239, 10.2174/138945007783220650
Weber, 2008, The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models, Nat. Rev. Immunol., 8, 802, 10.1038/nri2415
Libby, 2013, Immune effector mechanisms implicated in atherosclerosis: From mice to humans, Immunity, 38, 1092, 10.1016/j.immuni.2013.06.009
Steven, 2019, Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease, Oxidative Med. Cell. Longev., 2019, 26, 10.1155/2019/7092151
Steinberg, 1990, Lipoproteins and atherogenesis. Current concepts, Jama, 264, 3047, 10.1001/jama.1990.03450230083034
Ross, 1993, The pathogenesis of atherosclerosis: A perspective for the 1990s, Nature, 362, 801, 10.1038/362801a0
Swirski, 2006, Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease, Proc. Natl. Acad. Sci. USA, 103, 10340, 10.1073/pnas.0604260103
Hahn, 2009, Mechanotransduction in vascular physiology and atherogenesis, Na. Rev. Mol. Cell Biol., 10, 53, 10.1038/nrm2596
Bi, 2019, M2 Macrophages as a Potential Target for Antiatherosclerosis Treatment, Neural Plast., 2019, 21, 10.1155/2019/6724903
Stienstra, 2011, Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: A crucial role for Kruppel-like factor 2, Atherosclerosis, 214, 345, 10.1016/j.atherosclerosis.2010.11.018
Martinon, 2010, Signaling by ROS drives inflammasome activation, Eur. J. Immunol., 40, 616, 10.1002/eji.200940168
Baron, 2011, Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways, Circ. Res., 108, 985, 10.1161/CIRCRESAHA.110.233775
Abdelbaky, 2013, Focal arterial inflammation precedes subsequent calcification in the same location: A longitudinal FDG-PET/CT study, Circ. Cardiovasc. Imaging, 6, 747, 10.1161/CIRCIMAGING.113.000382
Bobryshev, 2005, Transdifferentiation of smooth muscle cells into chondrocytes in atherosclerotic arteries in situ: Implications for diffuse intimal calcification, J. Pathol., 205, 641, 10.1002/path.1743
Lanzer, 2014, Medial vascular calcification revisited: Review and perspectives, Eur. Heart. J., 35, 1515, 10.1093/eurheartj/ehu163
Hruska, 2005, Bone morphogenetic proteins in vascular calcification, Circ. Res., 97, 105, 10.1161/01.RES.00000175571.53833.6c
Riad, 2018, A Novel Mechanism for Atherosclerotic Calcification: Potential Resolution of the Oxidation Paradox, Antioxid. Redox Signal., 29, 471, 10.1089/ars.2017.7362
Nakaoka, 1997, Inhibition of rat vascular smooth muscle proliferation in vitro and in vivo by bone morphogenetic protein-2, J. Clin. Investig., 100, 2824, 10.1172/JCI119830
Wong, 2003, BMP-2 inhibits proliferation of human aortic smooth muscle cells via p21Cip1/Waf1, Am. J. Physiol. Endocrinol. Metab., 284, E972, 10.1152/ajpendo.00385.2002
Matsushita, 1998, Inhibition of growth of human vascular smooth muscle cells by overexpression of p21 gene through induction of apoptosis, Hypertension, 31, 493, 10.1161/01.HYP.31.1.493
Dorai, 2000, Bone morphogenetic protein-7 (osteogenic protein-1) inhibits smooth muscle cell proliferation and stimulates the expression of markers that are characteristic of SMC phenotype in vitro, J. Cell. Physiol., 184, 37, 10.1002/(SICI)1097-4652(200007)184:1<37::AID-JCP4>3.0.CO;2-M
Dorai, 2001, Bone morphogenetic protein-7 modulates genes that maintain the vascular smooth muscle cell phenotype in culture, J. Bone Jt. Surg. Am. Vol., 83, 70, 10.2106/00004623-200100001-00010
Li, 2008, BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells, Atherosclerosis, 199, 271, 10.1016/j.atherosclerosis.2007.11.031
Tobin, 2006, Bone morphogenetic proteins and growth differentiation factors as drug targets in cardiovascular and metabolic disease, Drug. Discov. Today, 11, 405, 10.1016/j.drudis.2006.03.016
Vattikuti, 2004, Osteogenic regulation of vascular calcification: An early perspective, Am. J. Physiol. Endocrinol. Metab., 286, E686, 10.1152/ajpendo.00552.2003
Johnson, 2006, Vascular calcification: Pathobiological mechanisms and clinical implications, Circ. Res., 99, 1044, 10.1161/01.RES.0000249379.55535.21
Davies, 2003, BMP-7 is an efficacious treatment of vascular calcification in a murine model of atherosclerosis and chronic renal failure, J. Am. Soc. Nephrol., 14, 1559, 10.1097/01.ASN.0000068404.57780.DD
Morrell, 2001, Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins, Circulation, 104, 790, 10.1161/hc3201.094152
Kang, 2010, Bone morphogenetic protein-7 inhibits vascular calcification induced by high vitamin D in mice, Tohoku J. Exp. Med., 221, 299, 10.1620/tjem.221.299
Lu, 2015, Myocardial Infarction: Symptoms and Treatments, Cell Biochem. Biophys., 72, 865, 10.1007/s12013-015-0553-4
Swynghedauw, 1999, Molecular mechanisms of myocardial remodeling, Physiol. Rev., 79, 215, 10.1152/physrev.1999.79.1.215
Holmes, 2005, Structure and mechanics of healing myocardial infarcts, Annu. Rev. Biomed. Eng., 7, 223, 10.1146/annurev.bioeng.7.060804.100453
Jugdutt, 2003, Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways, Curr. Drug Targets Cardiovasc. Haematol. Disord., 3, 1, 10.2174/1568006033337276
Jugdutt, 2003, Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough?, Circulation, 108, 1395, 10.1161/01.CIR.0000085658.98621.49
Jugdutt, 2002, Vascular remodeling during healing after myocardial infarction in the dog model: Effects of reperfusion, amlodipine and enalapril, J. Am. Coll. Cardiol., 39, 1538, 10.1016/S0735-1097(02)01805-3
Alibhai, 2014, Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function, Circ. Res., 114, 1713, 10.1161/CIRCRESAHA.114.302995
Nahrendorf, 2007, The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J. Exp. Med., 204, 3037, 10.1084/jem.20070885
Dewald, 2005, CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts, Circ. Res., 96, 881, 10.1161/01.RES.0000163017.13772.3a
Zouggari, 2013, B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction, Nat. Med., 19, 1273, 10.1038/nm.3284
Hilgendorf, 2014, Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium, Circ. Res., 114, 1611, 10.1161/CIRCRESAHA.114.303204
Frangogiannis, 2002, The inflammatory response in myocardial infarction, Cardiovasc. Res., 53, 31, 10.1016/S0008-6363(01)00434-5
Fadok, 1998, Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF, J. Clin. Investig., 101, 890, 10.1172/JCI1112
Xiao, 2006, Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages, J. Biol. Chem., 281, 38376, 10.1074/jbc.M605146200
Korns, 2011, Modulation of macrophage efferocytosis in inflammation, Front. Immunol., 2, 57, 10.3389/fimmu.2011.00057
Narula, 1996, Apoptosis in myocytes in end-stage heart failure, N. Engl. J. Med., 335, 1182, 10.1056/NEJM199610173351603
Sharov, 1996, Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure, Am. J. Pathol., 148, 141
Intengan, 2001, Vascular remodeling in hypertension: Roles of apoptosis, inflammation, and fibrosis, Hypertension, 38, 581, 10.1161/hy09t1.096249
Buja, 2008, Cardiomyocyte death and renewal in the normal and diseased heart, Cardiovasc. Pathol., 17, 349, 10.1016/j.carpath.2008.02.004
Talman, 2016, Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration, Cell Tissue Res., 365, 563, 10.1007/s00441-016-2431-9
Barin, 2012, Macrophage diversity in cardiac inflammation: A review, Immunobiology, 217, 468, 10.1016/j.imbio.2011.06.009
Ma, F., Li, Y., Jia, L., Han, Y., Cheng, J., Li, H., Qi, Y., and Du, J. (2012). Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF beta/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS ONE, 7.
Martinez, 2014, The M1 and M2 paradigm of macrophage activation: Time for reassessment, F1000Prime Rep., 6, 13, 10.12703/P6-13
Aoyagi, 2011, The Cardiomyocyte as a Source of Cytokines in Cardiac Injury, J. Cell Sci. Ther., 2012, 003
Han, 2012, The pro-inflammatory role of TGFβ1: A paradox?, Int. J. Biol. Sci., 8, 228, 10.7150/ijbs.8.228
Sanjabi, 2009, Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity, Curr. Opin. Pharmacol., 9, 447, 10.1016/j.coph.2009.04.008
Ramesh, 2009, Transforming growth factor beta (TGFbeta)-induced apoptosis: The rise & fall of Bim, Cell Cycle, 8, 11, 10.4161/cc.8.1.7291
Cucoranu, 2005, NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts, Circ. Res., 97, 900, 10.1161/01.RES.0000187457.24338.3D
Hao, 1999, Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing, J. Mol. Cell. Cardiol., 31, 667, 10.1006/jmcc.1998.0902
Li, 2005, Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells, Circulation, 111, 2438, 10.1161/01.CIR.0000167553.49133.81
Yang, 2015, Exogenous cytochrome c inhibits the expression of transforming growth factor-beta1 in a mouse model of sepsis-induced myocardial dysfunction via the SMAD1/5/8 signaling pathway, Mol. Med. Rep., 12, 2189, 10.3892/mmr.2015.3629
Hao, 2000, Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro, Am. J. Physiol. Heart Circ. Physiol., 279, 3020, 10.1152/ajpheart.2000.279.6.H3020
Schneiders, 2005, SMAD proteins are involved in apoptosis induction in ventricular cardiomyocytes, Cardiovasc. Res., 67, 87, 10.1016/j.cardiores.2005.02.021
Heger, 2011, TGFbeta receptor activation enhances cardiac apoptosis via SMAD activation and concomitant NO release, J. Cell. Physiol., 226, 2683, 10.1002/jcp.22619
Gabriel, 2009, Transforming growth factor-beta and angiotensin in fibrosis and burn injuries, J. Burn Care Res., 30, 471, 10.1097/BCR.0b013e3181a28ddb
Rosenkranz, 2002, Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1), Am. J. Physiol. Heart Circ. Physiol., 283, H1253, 10.1152/ajpheart.00578.2001
Derynck, 2003, Smad-dependent and Smad-independent pathways in TGF-beta family signalling, Nature, 425, 577, 10.1038/nature02006
Engel, 1999, Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription, J. Biol. Chem., 274, 37413, 10.1074/jbc.274.52.37413
Yu, 2002, TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses, EMBO J., 21, 3749, 10.1093/emboj/cdf366
Hayashi, 1997, The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling, Cell, 89, 1165, 10.1016/S0092-8674(00)80303-7
Walton, 2017, Targeting TGF-beta Mediated SMAD Signaling for the Prevention of Fibrosis, Front. Pharmacol., 8, 461, 10.3389/fphar.2017.00461
Zeisberg, 2003, Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models, Am. J. Physiol. Renal. Physiol., 285, 1060, 10.1152/ajprenal.00191.2002
Kinoshita, 2007, Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats, Gut, 56, 706, 10.1136/gut.2006.092460
Liang, 2016, BMP-7 attenuated silica-induced pulmonary fibrosis through modulation of the balance between TGF-beta/Smad and BMP-7/Smad signaling pathway, Chem. Biol. Interact., 243, 72, 10.1016/j.cbi.2015.11.012
Vukicevic, 1998, Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat, J. Clin. Investig., 102, 202, 10.1172/JCI2237
Jin, 2018, Exogenous BMP-7 Facilitates the Recovery of Cardiac Function after Acute Myocardial Infarction through Counteracting TGF-beta1 Signaling Pathway, Tohoku J. Exp. Med., 244, 1, 10.1620/tjem.244.1
Zhao, M., Zheng, S., Yang, J., Wu, Y., Ren, Y., Kong, X., Li, W., and Xuan, J. (2015). Suppression of TGF-beta1/Smad signaling pathway by sesamin contributes to the attenuation of myocardial fibrosis in spontaneously hypertensive rats. PLoS ONE, 10.
Merino, 2016, BMP-7 attenuates left ventricular remodelling under pressure overload and facilitates reverse remodelling and functional recovery, Cardiovasc. Res., 110, 331, 10.1093/cvr/cvw076
Zimmet, 2017, Diabetes and its drivers: The largest epidemic in human history?, Clin. Diabetes Endocrinol., 3, 1, 10.1186/s40842-016-0039-3
Maahs, 2010, Epidemiology of type 1 diabetes, Endocrinol. Metab. Clin. North Am., 39, 481, 10.1016/j.ecl.2010.05.011
Nathan, 2007, Impaired Fasting Glucose and Impaired Glucose Tolerance, Implic. Care, 30, 753
Aragno, 2004, Oxidative stress impairs skeletal muscle repair in diabetic rats, Diabetes, 53, 1082, 10.2337/diabetes.53.4.1082
Bloomgarden, 2007, Diabetic retinopathy and diabetic neuropathy, Diabetes Care, 30, 760, 10.2337/dc07-zb03
Howarth, 2011, Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat, Exp. Physiol., 96, 875, 10.1113/expphysiol.2011.058271
Oberley, 1988, Free radicals and diabetes, Free Radic. Biol. Med., 5, 113, 10.1016/0891-5849(88)90036-6
Wolff, 1991, Protein glycation and oxidative stress in diabetes mellitus and ageing, Free Radic. Biol. Med., 10, 339, 10.1016/0891-5849(91)90040-A
Baynes, 1999, Role of oxidative stress in diabetic complications: A new perspective on an old paradigm, Diabetes, 48, 1, 10.2337/diabetes.48.1.1
Baynes, 1991, Role of oxidative stress in development of complications in diabetes, Diabetes, 40, 405, 10.2337/diab.40.4.405
Pickup, 1998, Is type II diabetes mellitus a disease of the innate immune system?, Diabetologia, 41, 1241, 10.1007/s001250051058
Muller, 2002, Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors, Diabetologia, 45, 805, 10.1007/s00125-002-0829-2
Pickup, 2000, Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes, Life Sci., 67, 291, 10.1016/S0024-3205(00)00622-6
Rehman, 2017, Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus, Crit. Rev. Eukaryot. Gene Expr., 27, 229, 10.1615/CritRevEukaryotGeneExpr.2017019712
Dhingra, 2011, Akt regulates IL-10 mediated suppression of TNFα-induced cardiomyocyte apoptosis by upregulating Stat3 phosphorylation, PLoS ONE, 6, e25009, 10.1371/journal.pone.0025009
Chowdhry, 2007, Diabetes increases apoptosis and necrosis in both ischemic and nonischemic human myocardium: Role of caspases and poly-adenosine diphosphate-ribose polymerase, J. Thorac Cardiovasc. Surg., 134, 124, 10.1016/j.jtcvs.2006.12.059
Li, 2007, Involvement of endoplasmic reticulum stress in myocardial apoptosis of streptozocin-induced diabetic rats, J. Clin. Biochem. Nutr., 41, 58, 10.3164/jcbn.2007008
Picatoste, 2009, Myocardial fibrosis and apoptosis, but not inflammation, are present in long-term experimental diabetes, Am. J. Physiol. Heart Circ. Physiol., 297, H2109, 10.1152/ajpheart.00157.2009
Izumi, 2001, Bone morphogenetic protein-2 inhibits serum deprivation-induced apoptosis of neonatal cardiac myocytes through activation of the Smad1 pathway, J. Biol. Chem., 276, 31133, 10.1074/jbc.M101463200
Urbina, 2014, BMP-7 attenuates adverse cardiac remodeling mediated through M2 macrophages in prediabetic cardiomyopathy, Am. J. Physiol. Heart Circ. Physiol., 307, H762, 10.1152/ajpheart.00367.2014
Stiles, 2005, Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue, Mol. Cell. Biol., 25, 2498, 10.1128/MCB.25.6.2498-2510.2005
Moroni, 2019, The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis, Mediators Inflamm., 2019, 11, 10.1155/2019/7434376
Giannarelli, 2018, Manipulating Macrophage Polarization to Fix the Broken Heart: Challenges and Hopes, J. Am. Coll. Cardiol., 72, 905, 10.1016/j.jacc.2018.06.019
Nikiforov, 2019, Trained Circulating Monocytes in Atherosclerosis: Ex Vivo Model Approach, Front. Pharmacol., 10, 725, 10.3389/fphar.2019.00725
Woollard, 2010, Monocytes in atherosclerosis: Subsets and functions, Nat. Rev. Cardiol., 7, 77, 10.1038/nrcardio.2009.228
Lampiasi, 2016, The Alternative Faces of Macrophage Generate Osteoclasts, BioMed Res. Int., 2016, 9, 10.1155/2016/9089610
Zizzo, 2013, IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids, J. Immunol., 190, 5237, 10.4049/jimmunol.1203017
Sinha, 2005, Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis, Cancer Res., 65, 11743, 10.1158/0008-5472.CAN-05-0045
Weis, 2009, Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants, Mol. Biol. Cell., 20, 1280, 10.1091/mbc.e08-10-1005
Xu, 2006, IL-10-producing macrophages preferentially clear early apoptotic cells, Blood, 107, 4930, 10.1182/blood-2005-10-4144
Libby, 2009, Inflammation in atherosclerosis: From pathophysiology to practice, J. Am. Coll. Cardiol., 54, 2129, 10.1016/j.jacc.2009.09.009
Galkina, 2009, Immune and inflammatory mechanisms of atherosclerosis (*), Annu. Rev. Immunol., 27, 165, 10.1146/annurev.immunol.021908.132620
Moore, 2011, Macrophages in the pathogenesis of atherosclerosis, Cell, 145, 341, 10.1016/j.cell.2011.04.005
Seimon, 2009, Mechanisms and consequences of macrophage apoptosis in atherosclerosis, J. Lipid. Res., 50, 382, 10.1194/jlr.R800032-JLR200
Tardif, 2009, The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: An immunohistochemical study, Osteoarthr. Cartil., 17, 263, 10.1016/j.joca.2008.06.022
Martin, 2003, Role of the phosphatidylinositol 3 kinase-Akt pathway in the regulation of IL-10 and IL-12 by Porphyromonas gingivalis lipopolysaccharide, J. Immunol., 171, 717, 10.4049/jimmunol.171.2.717
Mantovani, 2004, The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol., 25, 677, 10.1016/j.it.2004.09.015