The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a Qinghai–Tibet Plateau endemic herbaceous perennial, <i>Anisodus tanguticus</i> (Solanaceae)

Ecology and Evolution - Tập 6 Số 7 - Trang 1977-1995 - 2016
Dongshi Wan1, Jianju Feng2, Dechun Jiang1, Kangshan Mao3,1, Yuan‐Wen Duan4, Georg Miehe5, Lars Opgenoorth5
1State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu, China
2College of Plant Sciences, Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarimu University, Alar, Xinjiang, China
3Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064 China
4Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650204 Yunnan, China
5Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany

Tóm tắt

AbstractVarious hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai–Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well‐differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (FST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary evolutionary history of species in topographically complex areas, such as the QTP.

Từ khóa


Tài liệu tham khảo

10.1111/j.1466-8238.2008.00439.x

10.1111/1755-0998.12184

10.1016/S1055-7903(03)00208-2

10.1111/j.1365-294X.2009.04396.x

10.1093/aob/mct274

10.1111/j.1558-5646.2007.00117.x

10.1111/geb.12344

10.1016/j.ympev.2004.05.002

10.1046/j.1365-294x.2000.01020.x

10.1175/JCLI3761.1

10.1016/j.biocon.2015.07.022

Cui Z. J., 1996, Plantation surfaces, paleokarst and uplift of Xizang (Tibet) plateau, Sci. China Ser. D‐Earth Sci., 39, 391

10.1007/s10592-005-9073-x

10.1186/1471-2148-7-214

10.1111/j.1469-8137.2011.03853.x

10.1360/biodiv.070108

10.1146/annurev.ecolsys.110308.120159

10.1111/j.1365-2656.2006.01186.x

10.1111/j.1365-294X.2006.03067.x

10.1111/mec.12388

10.1111/j.1558-5646.1985.tb00420.x

Felsenstein J., 2005, PHYLIP (Phylogeny Inference Package) version 3.6

10.1002/ece3.78

10.1016/j.tree.2014.05.007

10.1002/9780470979365

10.1111/j.1095-8312.2012.02016.x

10.1111/nph.12929

10.1111/j.1365-2699.2007.01834.x

10.1111/jbi.12562

10.1046/j.1472-4642.1999.00058.x

10.1038/369448a0

Hamilton M. B., 1999, Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation, Mol. Ecol., 8, 521

Hasumi H., 2004, K‐1 coupled GCM (MIROC) description: Center for Climate System Research

He Y. J., 2004, Conservation priorities for plant species of forest‐meadow ecotone in Sanjiangyuan nature reserve, Chin. J. Appl. Ecol., 15, 1307

10.1038/35016000

10.1098/rstb.2003.1388

10.1016/j.ympev.2009.09.016

10.1111/j.1365-2486.2006.01116.x

10.1002/joc.1276

10.1111/j.1558-5646.1997.tb03657.x

10.1111/j.1095-8312.2010.01553.x

10.1111/nph.13089

Li J. J., 1979, A discussion on the period, amplitude and type of the uplift of the Qinghai‐Xizang (Tibetan) Plateau, Sci. Sin., 22, 1314

Li J. J., 1995, Uplift of the Qinghai‐Xizang (Tibet) plateau and global change

Li J. J., 1996, Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic, Sci. China Ser. D‐Earth Sci., 39, 380

10.1111/mec.12466

10.1007/s13127-014-0196-0

10.1093/bioinformatics/btp187

10.1016/S1055-7903(02)00039-8

10.1016/j.ympev.2005.09.010

10.1111/j.1759-6831.2012.00214.x

10.1111/jse.12094

10.1111/bij.12246

10.1111/j.1469-8137.2004.01055.x

10.1046/j.1365-2699.2002.00702.x

10.1353/hub.2004.0034

10.1111/j.1365-294X.2009.04418.x

10.1175/2009BAMS2778.1

10.1111/j.1365-294X.2007.03459.x

10.1038/srep10396

10.1111/j.1365-294X.2006.02908.x

10.1111/j.1469-8137.2009.03007.x

10.1126/science.1120808

10.1038/21181

10.1111/j.1365-2486.2006.01282.x

10.1016/j.tree.2009.02.011

10.1111/j.1365-294X.2007.03425.x

10.1016/j.ecolmodel.2005.03.026

10.1111/j.1365-294X.2008.03664.x

10.1111/ddi.12237

10.1111/j.1469-8137.2012.04242.x

10.1016/j.ympev.2011.01.012

Rambaut A.2009.Figtree 1.3.1.Available athttp://tree.bio.ed.ac.uk/software/figtree.

Rambaut A. andA. J.Drummond.2009.Tracer v1.5. Available athttp://tree.bio.ed.ac.uk/software/tracer/(accessed on Feb. 14 2016).

10.1111/j.1365-2699.2007.01814.x

10.1007/s10531-012-0327-x

10.1002/ece3.100

10.1111/j.1365-294X.2010.04828.x

10.3732/ajb.92.1.142

10.3189/S0260305500008715

Shi Y. F., 1995, Studies on altitude and climatic environment in the middle and east parts of Tibetan Plateau during Quaternary maximum glaciation, J. Glaciol. Geocryol., 17, 97

Shi Y. F., 1997, Glaciers and environments during the Last Glacial Maximum (LGM) on the Tibetan Plateau, J. Glaciol. Geocryol., 19, 97

Shi Y. F., 1998, Uplift and environmental changes of Qinghai‐Tibetan plateau in the late Cenozoic

Shi Y. F., 1999, Uplift of the Qinghai‐Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic, Acta Geogr. Sin., 54, 10

Shi Y. F., 2000, Glaciers and their environments in China

10.1016/j.ympev.2003.10.008

10.1098/rspb.2009.1272

10.1016/j.ympev.2012.01.002

10.1111/jbi.12434

Swofford D. L., 2002, PAUP*: phylogenetic analyses using parsimony (*and other methods)

10.1007/BF00037152

10.1093/molbev/msr121

10.1002/jqs.937

10.1093/nar/25.24.4876

10.1111/j.1095-8339.2005.00384.x

10.1016/j.ympev.2010.09.007

10.1016/j.tree.2013.09.001

10.1111/j.1095-8312.2009.01225.x

10.1111/j.1365-294X.2008.04055.x

10.1111/j.1744-7909.2009.00818.x

10.1111/j.1365-294X.2010.04729.x

10.1111/jse.12089

10.1002/ece3.1449

Weir B. S., 1996, Genetic data analysis II: methods for discrete population genetic data

10.3389/fgene.2014.00004

White T. J., 1990, PCR protocols: a guide to methods and applications, 315

10.1073/pnas.84.24.9054

10.1111/j.1365-294X.2010.04613.x

Yang Y. C., 1991, Tibetan medicines

10.1111/j.1365-294X.2008.03976.x

10.1371/journal.pone.0037196

10.3732/ajb.1100506

Zhang X.‐F., 2002, The variation of the contents of four tropane akaloids in Anisodus tanguticus, Acta Bot. Boreali‐Occidentalia Sin., 22, 630

Zhang Z. Y., 1994, Flora of China, 300

10.1111/j.1365-294X.2005.02677.x

10.1016/S1040-6182(02)00054-X

10.1007/s10709-007-9154-5

10.1016/S1040-6182(97)00011-6

10.1111/j.1558-5646.2010.00988.x