The Pseudo-Direct Numerical Simulation Method considered as a Reduced Order Model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Idelsohn SR, Cardona A. Reduction methods and explicit time integration technique in structural dynamics. Advances in Engineering Software. 1984;6(1):36–44.
Idelsohn SR, Cardona A. A load-dependent basis for reduced nonlinear structural dynamics. Computers & Structures. 1985;20(1–3):203–10.
Cardona A, Idelsohn S. Solution of non-linear thermal transient problems by a reduction method. International journal for numerical methods in engineering. 1986;23(6):1023–42.
Baiges J, Codina R, Idelsohn S. Explicit reduced-order models for the stabilized finite element approximation of the incompressible navier-stokes equations. International Journal for Numerical Methods in Fluids. 2013;72(12):1219–43.
Cosimo A, Cardona A, Idelsohn S. General treatment of essential boundary conditions in reduced order models for non-linear problems. Advanced Modeling and Simulation in Engineering Sciences. 2016;3(1):1–14.
Farhat C, Avery P, Chapman T, Cortial J. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. International Journal for Numerical Methods in Engineering. 2014;98(9):625–62.
Farhat C, Chapman T, Avery P. Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. International journal for numerical methods in engineering. 2015;102(5):1077–110.
Ryckelynck D. A priori hyperreduction method: an adaptive approach. Journal of computational physics. 2005;202(1):346–66.
Ryckelynck D, Chinesta F, Cueto E, Ammar A. On thea priori model reduction: Overview and recent developments. Archives of Computational methods in Engineering. 2006;13(1):91–128.
Nouy A. A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Computer Methods in Applied Mechanics and Engineering. 2010;199(23–24):1603–26.
Chinesta F, Ladeveze P, Cueto E. A short review on model order reduction based on proper generalized decomposition. Archives of Computational Methods in Engineering. 2011;18:395–404. https://doi.org/10.1007/s11831-011-9064-7.
Chinesta F, Ladevèze P. Separated representations and pgd-based model reduction. Fundamentals and Applications, International Centre for Mechanical Siences, Courses and Lectures. 2014;554:24.
Idelsohn S, Nigro N, Larreteguy A, Gimenez JM, Ryzhakov P. A pseudo-dns method for the simulation of incompressible fluid flows with instabilities at different scales. Computational Particle Mechanics. 2020;7(1):19–40.
Idelsohn SR, Gimenez JM, Nigro NM, Oñate E. The pseudo-direct numerical simulation method for multi-scale problems in mechanics. Computer Methods in Applied Mechanics and Engineering. 2021;380:113774. https://doi.org/10.1016/j.cma.2021.113774.
Gimenez JM, Idelsohn SR, Oñate E, Löhner R. A multiscale approach for the numerical simulation of turbulent flows with droplets. Archives of Computational Methods in Engineering. 2021;28(6):4185–204.
Oliver J, Caicedo M, Huespe AE, Hernández JA, Roubin E. Reduced order modeling strategies for computational multiscale fracture. Computer Methods in Applied Mechanics and Engineering. 2017;313:560–95. https://doi.org/10.1016/j.cma.2016.09.039.
Allier P, Chamoin L, Ladevèze P. Proper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on constitutive relation error minimization. Adv. Model. and Simul. in Eng. Sci. 2015;2(17). https://doi.org/10.1186/s40323-015-0038-4
Badías A, González D, Alfaro I, Chinesta F, Cueto E. Local proper generalized decomposition. International Journal for Numerical Methods in Engineering. 2017;112(12):1715–32.
Cosimo A, Cardona A, Idelsohn S. Improving the k-compressibility of hyper reduced order models with moving sources: applications to welding and phase change problems. Computer Methods in Applied Mechanics and Engineering. 2014;274:237–63.
Cosimo A, Cardona A, Idelsohn S. Global-local rom for the solution of parabolic problems with highly concentrated moving sources. Computer Methods in Applied Mechanics and Engineering. 2017;326:739–56.