Tiềm Năng của Quang Phổ Raman Trong Việc Phân Loại Phi lê Cá

Food Analytical Methods - Tập 9 - Trang 1301-1306 - 2015
Božidar Rašković1, Ralf Heinke2, Petra Rösch2, Jürgen Popp2,3,4
1University of Belgrade, Faculty of Agriculture, Belgrade-Zemun, Serbia
2Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
3Infectognostics, Forschungscampus Jena, Jena, Germany
4Leibniz Institute of Photonic Technology e.V., Jena, Germany

Tóm tắt

Vì sản phẩm thủy sản đại diện cho một nguồn thực phẩm quan trọng và đang phát triển trên toàn cầu, nên tỷ lệ xảy ra việc gán nhãn sai ý định đối với sản phẩm cá và các gian lận trong nhà hàng cũng gia tăng trên toàn thế giới. Trong nghiên cứu hiện tại, quang phổ Raman, như một kỹ thuật nhanh chóng và không xâm lấn, đã được áp dụng bằng cách sử dụng laser với bước sóng 532 nm để phân loại các phi lê cá đông lạnh sâu. Không cần chuẩn bị trước, mô cơ của 12 loại cá đã được phân tích bằng thiết bị Raman, và theo phân tích cụm phân cấp của các phổ của chúng, ba nhóm đã được xác định: (1) nhóm carotenoid, cá thuộc họ cá hồi; (2) nhóm nước ngọt, cá được nuôi trong nước ngọt hoặc nước lợ; và (3) nhóm nước mặn, cá được nuôi trong nước muối. Do đó, nghiên cứu chứng minh rằng quang phổ Raman có thể được sử dụng như một phương pháp sàng lọc trực tiếp, không tốn kém và nhanh chóng trước khi tiến hành các phương pháp tiêu chuẩn để xác định các phi lê cá.

Từ khóa

#quang phổ Raman #phân loại phi lê cá #kỹ thuật không xâm lấn #nguồn thực phẩm #phân tích cụm phân cấp

Tài liệu tham khảo

Afseth NK, Wold JP, Segtnan VH (2006) The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Anal Chim Acta 572:85–92. doi:10.1016/j.aca.2006.05.013 Alfnes F, Guttormsen AG, Steine G, Kolstad K (2006) Consumers’ willingness to pay for the color of salmon: a choice experiment with real economic incentives. Am J Agric Econ 88:1050–1061. doi:10.1111/j.1467-8276.2006.00915.x Asensio L, Samaniego L (2009) Rapid identification of grouper and wreck fish meals by ELISA: a field study in restaurants. Int J Food Sci Technol 44:1585–1589. doi:10.1111/j.1365-2621.2008.01857.x Bocklitz T, Walter A, Hartmann K, Rösch P, Popp J (2011) How to pre-process Raman spectra for reliable and stable models? Anal Chim Acta 704:47–56. doi:10.1016/j.aca.2011.06.043 Careche M, Herrero AM, Rodriguez-Casado A, Del Mazo ML, Carmona P (1999) Structural changes of hake (Merluccius merluccius L.) fillets: effects of freezing and frozen storage. J Agric Food Chem 47:952–959. doi:10.1021/jf9809481 Carpenè E, Veggetti A, Mascarello F (1982) Histochemical fibre types in the lateral muscle of fishes in fresh, brackish and salt water. J Fish Biol 20:379–396. doi:10.1111/j.1095-8649.1982.tb03932.x Cerig E (2002) Improved grow-out of European sea bass (Dicentrarchus labrax L., 1781). Turk J Fish Aquat Sci 2:71–75 Damez J-L, Clerjon S (2008) Meat quality assessment using biophysical methods related to meat structure. Meat Sci 80:132–149. doi:10.1016/j.meatsci.2008.05.039 Development Core Team R (2008) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna Dörfer T, Bocklitz T, Tarcea N, Schmitt M, Popp J (2011) Checking and improving calibration of Raman spectra using chemometric approaches. Z Phys Chem 225:753–764. doi:10.1524/zpch.2011.0077 Ellis DI, Broadhurst D, Clarke SJ, Goodacre R (2005) Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning. Analyst 130:1648–1654. doi:10.1039/b511484e FAO (2014) The state of world fisheries and aquaculture. FAO, Rome Hatlen B, Jobling M, Bjerkeng B (1998) Relationships between carotenoid concentration and colour of fillets of Arctic chair, Salvelinus alpinus (L.), fed astaxanthin. Aquac Res 29:191–202. doi:10.1046/j.1365-2109.1998.00956.x Hedegaard M, Matthäus C, Hassing S, Krafft C, Diem M, Popp J (2011) Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theory Chem Account 130:1249–1260. doi:10.1007/s00214-011-0957-1 Herrero AM (2008a) Raman spectroscopy a promising technique for quality assessment of meat and fish: a review. Food Chem 107:1642–1651. doi:10.1016/j.foodchem.2007.10.014 Herrero AM (2008b) Raman spectroscopy for monitoring protein structure in muscle food systems. Crit Rev Food Sci Nutr 48:512–523. doi:10.1080/10408390701537385 Herrero AM, Carmona P, Careche M (2004) Raman spectroscopic study of structural changes in hake (Merluccius merluccius L.) muscle proteins during frozen storage. J Agric Food Chem 52:2147–2153. doi:10.1021/jf034301e Herrero AM, Carmona P, Ordóñez JA, Ldl H, Cambero MI (2009) Raman spectroscopic study of electron-beam irradiated cold-smoked salmon. Food Res Int 42:216–220. doi:10.1016/j.foodres.2008.10.010 Hu B, Ferrell M, Lim CE, Davis DA (2012) Evaluation of traditional diet and corn gluten feed substituted alternative diet for pond-raised hybrid catfish on production and xanthophyll level. Aquaculture 354–355:22–26. doi:10.1016/j.aquaculture.2012.04.038 Huggins AK, Colley L (1971) The changes in the non-protein nitrogenous constituents of muscle during the adaptation of the eel Anguilla anguilla L. from fresh water to sea water. Comp Biochem Phys 38:537–541. doi:10.1016/0305-0491(71)90310-5 Jacquet JL, Pauly D (2008) Trade secrets: renaming and mislabeling of seafood. Mar Pol 32:309–318. doi:10.1016/j.marpol.2007.06.007 Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209:2249–2264. doi:10.1242/jeb.02153 Kawai T, Sakaguchi M (1996) Fish flavor. Crit Rev Food Sci Nutr 36:257–298. doi:10.1080/10408399609527725 Lasch P, Haensch W, Naumann D, Diem M (2004) Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. BBA Mol Basis Dis 1688:176–186. doi:10.1016/j.bbadis.2003.12.006 Li G, Sinclair AJ, Li D (2011) Comparison of lipid content and fatty acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from China. J Agric Food Chem 59:1871–1881. doi:10.1021/jf104154q Marcos R, Monteiro RAF, Rocha E (2012) The use of design-based stereology to evaluate volumes and numbers in the liver: a review with practical guidelines. J Anat 220:303–317. doi:10.1111/j.1469-7580.2012.01475.x Marquardt BJ, Wold JP (2004) Raman analysis of fish: a potential method for rapid quality screening. LWT Food Sci Technol 37:1–8. doi:10.1016/S0023-6438(03)00114-2 Miller D, Jessel A, Mariani S (2012) Seafood mislabelling: comparisons of two western European case studies assist in defining influencing factors, mechanisms and motives. Fish Fish 13:345–358. doi:10.1111/j.1467-2979.2011.00426.x Ogawa M, Nakamura S, Horimoto Y, An H, Tsuchiya T, Nakai S (1999) Raman spectroscopic study of changes in fish actomyosin during setting. J Agric Food Chem 47:3309–3318. doi:10.1021/jf9813079 Papadopoulos LS, Finne G (1986) Effect of environmental salinity on sensory characteristics of penaeid shrimp. J Food Sci 51:812–814. doi:10.1111/j.1365-2621.1986.tb13938.x Rasmussen RS, Morrissey MT (2008) DNA-based methods for the identification of commercial fish and seafood species. Compr Rev Food Sci Food 7:280–295. doi:10.1111/j.1541-4337.2008.00046.x Rehbein H (2008) New fish on the German market: consumer protection against fraud by identification of species. J Verbr Lebensm 3:49–53. doi:10.1007/s00003-007-0301-9 Schmidt H, Sowoidnich K, Kronfeldt H-D (2010) A prototype hand-held Raman sensor for the in situ characterization of meat quality. Appl Spectrosc 64:888–894 Tolasa S, Cakli S, Ostermeyer U (2005) Determination of astaxanthin and canthaxanthin in salmonid. Eur Food Res Technol 221:787–79.1. doi:10.1007/s00217-005-0071-5 Tveterås S, Asche F, Bellemare MF, Smith MD, Guttormsen AG, Lem A, Lien K, Vannuccini S (2012) Fish is food—the FAO’s fish price index. PLoS One 7:e36731. doi:10.1371/journal.pone.0036731 Venugopal V, Shahidi F (1996) Structure and composition of fish muscle. Food Rev Int 12:175–197. doi:10.1080/87559129609541074 Warner K, Timme W, Lowell B, Hirshfield M (2013) Oceana study reveals seafood fraud nationwide. http://oceana.org/sites/default/files/reports/National_Seafood_Fraud_Testing_Results_FINAL.pdf Wold JP, Marquardt BJ, Dable BK, Robb D, Hatlen B (2004) Rapid quantification of carotenoids and fat in Atlantic salmon (Salmo salar L.) by Raman spectroscopy and chemometrics. Appl Spectrosc 58:395–403 Wong EHK, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837. doi:10.1016/j.foodres.2008.07.005 Xu X-L, Han M-Y, Fei Y, Zhou G-H (2011) Raman spectroscopic study of heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristic. Meat Sci 87:159–164. doi:10.1016/j.meatsci.2010.10.001