The O-antigen negative ∆wbaV mutant of Salmonella enterica serovar Enteritidis shows adaptive resistance to antimicrobial peptides and elicits colitis in streptomycin pretreated mouse model

Gut Pathogens - Tập 7 - Trang 1-12 - 2015
Sangeeta Jaiswal1, Niladri Bhusan Pati1, Manupriyam Dubey1, Chandrashekhar Padhi1, Prakash Kumar Sahoo1, Shilpa Ray1, Aryashree Arunima1, Nirmal Kumar Mohakud2, Mrutyunjay Suar1
1KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
2Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India

Tóm tắt

Salmonella enterica serovar Enteritidis, the most common cause of human gastroenteritis, employs several virulence factors including lipopolysaccharide (LPS) for infection and establishment of disease inside the host. The LPS of S. enterica serovar Enteritidis consists of lipid A, core oligosaccharide and O-antigen (OAg). The OAg consists of repeating units containing different sugars. The sugars of OAg are synthesized and assembled by a set of enzymes encoded by genes organized into clusters. Present study focuses on the effect of deletion of genes involved in biosynthesis of OAg repeating units on resistance to antimicrobial peptides and virulence in mice. In the present study, the OAg biosynthesis was impaired by deleting tyv, prt and wbaV genes involved in tyvelose biosynthesis and its transfer to OAg. The virulence phenotype of resulting mutants was evaluated by assessing resistance to antimicrobial peptides, serum complement, adhesion, invasion and in vivo colonization. Deletion of the above three genes resulted in the production of OAg-negative LPS. All the OAg-negative mutants showed phenotype reported for rough strains. Interestingly, ΔwbaV mutant showed increased resistance against antimicrobial peptides and normal human serum. In addition, the ΔwbaV mutant also showed increased adhesion and invasion as compared to the other two O-Ag negative mutants Δtyv and Δprt. In vivo experiments also confirmed the increased virulent phenotype of ΔwbaV mutant as compared to Δprt mutant. OAg-negative mutants are known to be avirulent; however, this study demonstrates that certain OAg negative mutants e.g. ∆wbaV may also show resistance to antimicrobial peptides and cause colitis in Streptomyces pretreated mouse model.

Tài liệu tham khảo

Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ et al (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis Off Publ Infect Dis Soc Am 50(6):882–889. doi:10.1086/650733 Allen-Vercoe E, Woodward MJ (1999) The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant. J Med Microbiol 48(8):771–780 Allen-Vercoe E, Woodward MJ (1999) Colonisation of the chicken caecum by afimbriate and aflagellate derivatives of Salmonella enterica serotype Enteritidis. Vet Microbiol 69(4):265–275 Nevola JJ, Laux DC, Cohen PS (1987) In vivo colonization of the mouse large intestine and in vitro penetration of intestinal mucus by an avirulent smooth strain of Salmonella typhimurium and its lipopolysaccharide-deficient mutant. Infect Immun 55(12):2884–2890 Nevola JJ, Stocker BA, Laux DC, Cohen PS (1985) Colonization of the mouse intestine by an avirulent Salmonella typhimurium strain and its lipopolysaccharide-defective mutants. Infect Immun 50(1):152–159 Freudenberg MA, Merlin T, Gumenscheimer M, Kalis C, Landmann R, Galanos C (2001) Role of lipopolysaccharide susceptibility in the innate immune response to Salmonella typhimurium infection: LPS, a primary target for recognition of Gram-negative bacteria. Microbes Infect/Inst Pasteur 3(14–15):1213–1222 Morgan E, Campbell JD, Rowe SC, Bispham J, Stevens MP, Bowen AJ et al (2004) Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54(4):994–1010. doi:10.1111/j.1365-2958.2004.04323.x Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Ann Rev Biochem 71:635–700. doi:10.1146/annurev.biochem.71.110601.135414 Kita H, Nikaido H (1973) Structure of cell wall lipopolysaccharide from Salmonella typhimurium. IV. Anomeric configuration of l-rhamnose residues and its taxonomic implications. J Bacteriol 113(2):672–679 Sasaki T, Uchida T (1974) Mutants of group D1 Salmonella carrying the somatic antigen of group A organisms: evidence for the lack of cytidine diphosphate paratose-2-epimerase activity. J Bacteriol 117(1):13–18 Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D et al (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4(12):495–503 Collins LV, Attridge S, Hackett J (1991) Mutations at rfc or pmi attenuate Salmonella typhimurium virulence for mice. Infect Immun 59(3):1079–1085 Hone DM, Attridge SR, Forrest B, Morona R, Daniels D, LaBrooy JT et al (1988) A galE via (Vi antigen-negative) mutant of Salmonella typhi Ty2 retains virulence in humans. Infect Immun 56(5):1326–1333 Li Y, Wang S, Scarpellini G, Gunn B, Xin W, Wanda SY et al (2009) Evaluation of new generation Salmonella enterica serovar Typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA. Proc Natl Acad Sci USA 106(2):593–598. doi:10.1073/pnas.0811697106 Hallis TM, Lei Y, Que NL, Liu H (1998) Mechanistic studies of the biosynthesis of paratose: purification and characterization of CDP-paratose synthase. Biochemistry 37(14):4935–4945. doi:10.1021/bi9725529 Samuel G, Reeves P (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338(23):2503–2519 Gunn JS (2001) Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res 7(1):57–62 Nummila K, Kilpelainen I, Zahringer U, Vaara M, Helander IM (1995) Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol 16(2):271–278 Verma N, Reeves P (1989) Identification and sequence of rfbS and rfbE, which determine antigenic specificity of group A and group D salmonellae. J Bacteriol 171(10):5694–5701 Wyk P, Reeves P (1989) Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J Bacteriol 171(10):5687–5693 Osborn MJ, Weiner IM (1968) Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium. J Biol Chem 243(10):2631–2639 Hong Y, Cunneen MM, Reeves PR (2012) The Wzx translocases for Salmonella enterica O-antigen processing have unexpected serotype specificity. Mol Microbiol 84(4):620–630. doi:10.1111/j.1365-2958.2012.08048.x Grossman N, Schmetz MA, Foulds J, Klima EN, Jimenez-Lucho VE, Leive LL et al (1987) Lipopolysaccharide size and distribution determine serum resistance in Salmonella montevideo. J Bacteriol 169(2):856–863 Liang-Takasaki CJ, Saxen H, Makela PH, Leive L (1983) Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect Immun 41(2):563–569 Holzer SU, Schlumberger MC, Jackel D, Hensel M (2009) Effect of the O-antigen length of lipopolysaccharide on the functions of Type III secretion systems in Salmonella enterica. Infect Immun 77(12):5458–5470. doi:10.1128/IAI.00871-09 Ilg K, Endt K, Misselwitz B, Stecher B, Aebi M, Hardt WD (2009) O-antigen-negative Salmonella enterica serovar Typhimurium is attenuated in intestinal colonization but elicits colitis in streptomycin-treated mice. Infect Immun 77(6):2568–2575. doi:10.1128/IAI.01537-08 Bravo D, Hoare A, Silipo A, Valenzuela C, Salinas C, Alvarez SA et al (2011) Different sugar residues of the lipopolysaccharide outer core are required for early interactions of Salmonella enterica serovars Typhi and Typhimurium with epithelial cells. Microb Pathog 50(2):70–80. doi:10.1016/j.micpath.2010.11.001 Hoare A, Bittner M, Carter J, Alvarez S, Zaldivar M, Bravo D et al (2006) The outer core lipopolysaccharide of Salmonella enterica serovar Typhi is required for bacterial entry into epithelial cells. Infect Immun 74(3):1555–1564. doi:10.1128/IAI.74.3.1555-1564.2006 Spahich NA, Hood DW, Moxon ER, St Geme JW 3rd (2012) Inactivation of Haemophilus influenzae lipopolysaccharide biosynthesis genes interferes with outer membrane localization of the hap autotransporter. J Bacteriol 194(7):1815–1822. doi:10.1128/JB.06316-11 Tam C, Missiakas D (2005) Changes in lipopolysaccharide structure induce the sigma(E)-dependent response of Escherichia coli. Mol Microbiol 55(5):1403–1412. doi:10.1111/j.1365-2958.2005.04497.x Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA (1993) The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 7(12B):2618–2628 Dartigalongue C, Missiakas D, Raina S (2001) Characterization of the Escherichia coli sigma E regulon. J Biol Chem 276(24):20866–20875. doi:10.1074/jbc.M100464200 Klein G, Lindner B, Brade H, Raina S (2011) Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-alpha-d-manno-oct-2-ulosonic acid and rhamnose. J Biol Chem 286(50):42787–42807. doi:10.1074/jbc.M111.291799 Li Y, Powell DA, Shaffer SA, Rasko DA, Pelletier MR, Leszyk JD et al (2012) LPS remodeling is an evolved survival strategy for bacteria. Proc Natl Acad Sci USA 109(22):8716–8721. doi:10.1073/pnas.1202908109 Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M et al (1998) PmrA–PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27(6):1171–1182 Helander IM, Kilpelainen I, Vaara M (1994) Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol 11(3):481–487 Helander IM, Kato Y, Kilpelainen I, Kostiainen R, Lindner B, Nummila K et al (1996) Characterization of lipopolysaccharides of polymyxin-resistant and polymyxin-sensitive Klebsiella pneumoniae O3. Eur J Biochem/FEBS 237(1):272–278 Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645. doi:10.1073/pnas.120163297 Vishwakarma V, Periaswamy B, Bhusan Pati N, Slack E, Hardt WD, Suar M (2012) A novel phage element of Salmonella enterica serovar Enteritidis P125109 contributes to accelerated type III secretion system 2-dependent early inflammation kinetics in a mouse colitis model. Infect Immun 80(9):3236–3246. doi:10.1128/IAI.00180-12 Marolda CL, Lahiry P, Vines E, Saldias S, Valvano MA (2006) Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347:237–252. doi:10.1385/1-59745-167-3:237 Pati NB, Vishwakarma V, Jaiswal S, Periaswamy B, Hardt WD, Suar M (2013) Deletion of invH gene in Salmonella enterica serovar Typhimurium limits the secretion of Sip effector proteins. Microbes Infect/Inst Pasteur 15(1):66–73. doi:10.1016/j.micinf.2012.10.014 Suar M, Jantsch J, Hapfelmeier S, Kremer M, Stallmach T, Barrow PA et al (2006) Virulence of broad- and narrow-host-range Salmonella enterica serovars in the streptomycin-pretreated mouse model. Infect Immun 74(1):632–644. doi:10.1128/IAI.74.1.632-644.2006 Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, Hogardt M et al (2003) Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71(5):2839–2858 Vishwakarma V, Pati NB, Ray S, Das S, Suar M (2014) TTSS2-deficient hha mutant of Salmonella typhimurium exhibits significant systemic attenuation in immunocompromised hosts. Virulence 5(2):311–320. doi:10.4161/viru.27605