The Notch signaling network in muscle stem cells during development, homeostasis, and disease
Tóm tắt
Từ khóa
Tài liệu tham khảo
Souilhol C, et al. RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development. Mol Cell Biol. 2006;26(13):4769–74. https://doi.org/10.1128/MCB.00319-06.
del Alamo D, Rouault H, Schweisguth F. Mechanism and significance of cis-inhibition in notch signalling. Curr Biol. 2011;21(1):R40–7. https://doi.org/10.1016/j.cub.2010.10.034.
Nandagopal N, Santat LA, Elowitz MB. Cis-activation in the notch signaling pathway. Elife. 2019;8. https://doi.org/10.7554/eLife.37880.
Mishra-Gorur K, et al. Down-regulation of Delta by proteolytic processing. J Cell Biol. 2002;159(2):313–24. https://doi.org/10.1083/jcb.200203117.
Varnum-Finney B, et al. Immobilization of notch ligand, Delta-1, is required for induction of notch signaling. J Cell Sci. 2000;113(Pt 23):4313–8.
Liu Y, et al. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun Signal. 2018;16(1):12. https://doi.org/10.1186/s12964-018-0224-3.
Sardi SP, et al. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell. 2006;127(1):185–97. https://doi.org/10.1016/j.cell.2006.07.037.
Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393(6683):382–6. https://doi.org/10.1038/30756.
Struhl G, Fitzgerald K, Greenwald I. Intrinsic activity of the Lin-12 and notch intracellular domains in vivo. Cell. 1993;74(2):331–45.
Fortini ME, Artavanis-Tsakonas S. The suppressor of hairless protein participates in notch receptor signaling. Cell. 1994;79(2):273–82.
Castel D, et al. Dynamic binding of RBPJ is determined by notch signaling status. Genes Dev. 2013;27(9):1059–71. https://doi.org/10.1101/gad.211912.112.
Krejci A, Bray S. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 2007;21(11):1322–7. https://doi.org/10.1101/gad.424607.
Relaix F, et al. Perspectives on skeletal muscle stem cells. Nat Commun. 2021;12(1):692. https://doi.org/10.1038/s41467-020-20760-6.
Bjornson CR, et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells. 2012;30(2):232–42. https://doi.org/10.1002/stem.773.
Brack AS, et al. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell. 2008;2(1):50–9. https://doi.org/10.1016/j.stem.2007.10.006.
Fukada S, et al. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development. 2011;138(21):4609–19. https://doi.org/10.1242/dev.067165.
Kuang S, et al. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007;129(5):999–1010. https://doi.org/10.1016/j.cell.2007.03.044.
Mourikis P, et al. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells. 2012;30(2):243–52. https://doi.org/10.1002/stem.775.
Schuster-Gossler K, Cordes R, Gossler A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci U S A. 2007;104(2):537–42. https://doi.org/10.1073/pnas.0608281104.
Vasyutina E, et al. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc Natl Acad Sci U S A. 2007;104(11):4443–8. https://doi.org/10.1073/pnas.0610647104.
Lin S, et al. Brief report: blockade of notch signaling in muscle stem cells causes muscular dystrophic phenotype and impaired muscle regeneration. Stem Cells. 2013;31(4):823–8. https://doi.org/10.1002/stem.1319.
Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development. 1994;120(9):2385–96.
Mourikis P, et al. Cell-autonomous notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development. 2012;139(24):4536–48. https://doi.org/10.1242/dev.084756.
Shawber C, et al. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development. 1996;122(12):3765–73.
Sun D, Li H, Zolkiewska A. The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation. J Cell Sci. 2008;121(Pt 22):3815–23. https://doi.org/10.1242/jcs.035493.
Brohl D, et al. Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on notch signals. Dev Cell. 2012;23(3):469–81. https://doi.org/10.1016/j.devcel.2012.07.014.
Kim JH, et al. Sex hormones establish a reserve pool of adult muscle stem cells. Nat Cell Biol. 2016;18(9):930–40. https://doi.org/10.1038/ncb3401.
Fujimaki S, et al. Notch1 and Notch2 coordinately regulate stem cell function in the quiescent and activated states of muscle satellite cells. Stem Cells. 2018;36(2):278–85. https://doi.org/10.1002/stem.2743.
Kitamoto T, Hanaoka K. Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells. 2010;28(12):2205–16. https://doi.org/10.1002/stem.547.
Wen Y, et al. Constitutive notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol. 2012;32(12):2300–11. https://doi.org/10.1128/MCB.06753-11.
Zhang Y, et al. Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells. Nat Commun. 2021;12(1):1318. https://doi.org/10.1038/s41467-021-21631-4.
Eliazer, S., X. Sun, and Brack A.S., Spatial heterogeneity of Delta-like 4 within a multinucleated niche cell maintains muscle stem cell diversity. bioRxiv, 2020 DOI: https://doi.org/10.1101/2020.10.20.347484.
Noguchi YT, et al. Cell-autonomous and redundant roles of Hey1 and HeyL in muscle stem cells: HeyL requires Hes1 to bind diverse DNA sites. Development. 2019;146(4). https://doi.org/10.1242/dev.163618.
Lahmann I, et al. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes Dev. 2019;33(9-10):524–35. https://doi.org/10.1101/gad.322818.118.
Baghdadi MB, et al. Reciprocal signalling by notch-collagen V-CALCR retains muscle stem cells in their niche. Nature. 2018;557(7707):714–8. https://doi.org/10.1038/s41586-018-0144-9.
Baghdadi MB, et al. Notch-induced miR-708 antagonizes satellite cell migration and maintains quiescence. Cell Stem Cell. 2018;23(6):859–868 e5. https://doi.org/10.1016/j.stem.2018.09.017.
Yue F, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328. https://doi.org/10.1038/ncomms14328.
Liang Y, et al. METTL3-mediated m(6)a methylation regulates muscle stem cells and muscle regeneration by notch signaling pathway. Stem Cells Int. 2021;2021:9955691. https://doi.org/10.1155/2021/9955691.
Mizuno S, et al. A disintegrin and metalloprotease 10 (ADAM10) is indispensable for maintenance of the muscle satellite cell pool. J Biol Chem. 2015;290(47):28456–64. https://doi.org/10.1074/jbc.M115.653477.
Gopinath SD, et al. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep. 2014;2(4):414–26. https://doi.org/10.1016/j.stemcr.2014.02.002.
Sultan SHA, Dyer C, Knight RD. Notch signaling regulates muscle stem cell homeostasis and regeneration in a teleost fish. Front Cell Dev Biol. 2021;9:726281. https://doi.org/10.3389/fcell.2021.726281.
Delfini MC, et al. Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development. 2000;127(23):5213–24.
Hirsinger E, et al. Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development. 2001;128(1):107–16.
Buas MF, Kabak S, Kadesch T. The notch effector Hey1 associates with myogenic target genes to repress myogenesis. J Biol Chem. 2010;285(2):1249–58. https://doi.org/10.1074/jbc.M109.046441.
Sakai H, et al. Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity. PLoS One. 2017;12(5):e0177516. https://doi.org/10.1371/journal.pone.0177516.
Buas MF, Kabak S, Kadesch T. Inhibition of myogenesis by notch: evidence for multiple pathways. J Cell Physiol. 2009;218(1):84–93. https://doi.org/10.1002/jcp.21571.
Fukuda S, et al. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. Elife. 2019;8. https://doi.org/10.7554/eLife.48284.
Shen H, et al. The notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev. 2006;20(6):675–88. https://doi.org/10.1101/gad.1383706.
Kondoh K, Sunadome K, Nishida E. Notch signaling suppresses p38 MAPK activity via induction of MKP-1 in myogenesis. J Biol Chem. 2007;282(5):3058–65. https://doi.org/10.1074/jbc.M607630200.
Lluis F, et al. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J. 2005;24(5):974–84. https://doi.org/10.1038/sj.emboj.7600528.
Esteves de Lima J, et al. TMEM8C-mediated fusion is regionalized and regulated by NOTCH signalling during foetal myogenesis. Development. 2022;149(2). https://doi.org/10.1242/dev.199928.
Yartseva V, et al. Heterogeneity of satellite cells implicates DELTA1/NOTCH2 signaling in self-renewal. Cell Rep. 2020;30(5):1491–1503 e6. https://doi.org/10.1016/j.celrep.2019.12.100.
Alunni A, et al. Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development. 2013;140(16):3335–47. https://doi.org/10.1242/dev.095018.
Lamar E, et al. Nrarp is a novel intracellular component of the notch signaling pathway. Genes Dev. 2001;15(15):1885–99. https://doi.org/10.1101/gad.908101.
Gros J, et al. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature. 2005;435(7044):954–8. https://doi.org/10.1038/nature03572.
Relaix F, et al. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature. 2005;435(7044):948–53.
Kassar-Duchossoy L, et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev. 2005;19(12):1426–31. https://doi.org/10.1101/gad.345505.
Ben-Yair R, Kalcheim C. Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development. 2005;132(4):689–701. https://doi.org/10.1242/dev.01617.
Hitoshi S, et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 2002;16(7):846–58. https://doi.org/10.1101/gad.975202.
Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic contribution to muscle development and homeostasis: the role of connective tissues. Front Cell Dev Biol. 2017;5:22. https://doi.org/10.3389/fcell.2017.00022.
Evano B, Tajbakhsh S. Skeletal muscle stem cells in comfort and stress. NPJ Regen Med. 2018;3:24. https://doi.org/10.1038/s41536-018-0062-3.
Rios AC, et al. Neural crest regulates myogenesis through the transient activation of NOTCH. Nature. 2011;473(7348):532–5. https://doi.org/10.1038/nature09970.
Christov C, et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell. 2007;18(4):1397–409. https://doi.org/10.1091/mbc.E06-08-0693.
Verma M, et al. Muscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and notch signaling. Cell Stem Cell. 2018;23(4):530–543 e9. https://doi.org/10.1016/j.stem.2018.09.007.
Esteves de Lima J, et al. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis. Elife. 2016;5. https://doi.org/10.7554/eLife.15593.
Low S, et al. Delta-like 4 activates notch 3 to regulate self-renewal in skeletal muscle stem cells. Stem Cells. 2018;36(3):458–66. https://doi.org/10.1002/stem.2757.
Kann AP, Krauss RS. Multiplexed RNAscope and immunofluorescence on whole-mount skeletal myofibers and their associated stem cells. Development. 2019;146(20). https://doi.org/10.1242/dev.179259.
Wittenberger T, et al. MyoD stimulates delta-1 transcription and triggers notch signaling in the Xenopus gastrula. EMBO J. 1999;18(7):1915–22. https://doi.org/10.1093/emboj/18.7.1915.
Zhang HH, Shang R, Bi P. Feedback regulation of notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet. 2021;17(8):e1009729. https://doi.org/10.1371/journal.pgen.1009729.
Dong Z, et al. Intralineage directional notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron. 2012;74(1):65–78. https://doi.org/10.1016/j.neuron.2012.01.031.
Fre S, et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005;435(7044):964–8. https://doi.org/10.1038/nature03589.
Sprinzak D, et al. Cis-interactions between notch and Delta generate mutually exclusive signalling states. Nature. 2010;465(7294):86–90. https://doi.org/10.1038/nature08959.
Zalc A, et al. Antagonistic regulation of p57kip2 by Hes/hey downstream of notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest. Development. 2014;141(14):2780–90. https://doi.org/10.1242/dev.110155.
Mademtzoglou D, et al. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. Elife. 2018;7. https://doi.org/10.7554/eLife.33337.
Krause M, Liu J. Somatic muscle specification during embryonic and post-embryonic development in the nematode C. elegans. Wiley Interdiscip Rev Dev Biol. 2012;1(2):203–14. https://doi.org/10.1002/wdev.15.
Moerman, D.G. and A. Fire, Muscle: structure, function, and development, in C. elegans II, nd, et al., Editors. 1997: Cold Spring Harbor (NY).
Mickey KM, et al. An inductive interaction in 4-cell stage C. elegans embryos involves APX-1 expression in the signalling cell. Development. 1996;122(6):1791–8.
Greenwald IS, Sternberg PW, Horvitz HR. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell. 1983;34(2):435–44.
Foehr ML, Liu J. Dorsoventral patterning of the C. elegans postembryonic mesoderm requires both LIN-12/notch and TGFbeta signaling. Dev Biol. 2008;313(1):256–66. https://doi.org/10.1016/j.ydbio.2007.10.027.
Figeac N, et al. Muscle stem cells and model systems for their investigation. Dev Dyn. 2007;236(12):3332–42. https://doi.org/10.1002/dvdy.21345.
Fuerstenberg S, Giniger E. Multiple roles for notch in drosophila myogenesis. Dev Biol. 1998;201(1):66–77. https://doi.org/10.1006/dbio.1998.8944.
Ruiz Gomez M, Bate M. Segregation of myogenic lineages in drosophila requires numb. Development. 1997;124(23):4857–66.
Aradhya R, Jagla K. Insulin-dependent non-canonical activation of notch in drosophila: a story of notch-induced muscle stem cell proliferation. Adv Exp Med Biol. 2020;1227:131–44. https://doi.org/10.1007/978-3-030-36422-9_9.
Pasut A, et al. Notch signaling rescues loss of satellite cells lacking Pax7 and promotes brown adipogenic differentiation. Cell Rep. 2016;16(2):333–43. https://doi.org/10.1016/j.celrep.2016.06.001.
Boyden SE, et al. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics. 2012;13(2):115–24. https://doi.org/10.1007/s10048-012-0315-z.
Holterman CE, et al. Megf10 regulates the progression of the satellite cell myogenic program. J Cell Biol. 2007;179(5):911–22. https://doi.org/10.1083/jcb.200709083.
Saha M, et al. Consequences of MEGF10 deficiency on myoblast function and Notch1 interactions. Hum Mol Genet. 2017;26(15):2984–3000. https://doi.org/10.1093/hmg/ddx189.
Aradhya R, et al. Muscle niche-driven insulin-notch-Myc cascade reactivates dormant adult muscle precursors in drosophila. Elife. 2015;4. https://doi.org/10.7554/eLife.08497.
Sun H, et al. Stra13 regulates satellite cell activation by antagonizing notch signaling. J Cell Biol. 2007;177(4):647–57. https://doi.org/10.1083/jcb.200609007.
Du H, et al. Macrophage-released ADAMTS1 promotes muscle stem cell activation. Nat Commun. 2017;8(1):669. https://doi.org/10.1038/s41467-017-00522-7.
Liu L, et al. Impaired notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells. Cell Stem Cell. 2018;23(4):544–556 e4. https://doi.org/10.1016/j.stem.2018.08.019.
Castel D, et al. Small-RNA sequencing identifies dynamic microRNA deregulation during skeletal muscle lineage progression. Sci Rep. 2018;8(1):4208. https://doi.org/10.1038/s41598-018-21991-w.
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res. 2022;411(1):112906. https://doi.org/10.1016/j.yexcr.2021.112906.
Servian-Morilla E, et al. A POGLUT1 mutation causes a muscular dystrophy with reduced notch signaling and satellite cell loss. EMBO Mol Med. 2016;8(11):1289–309. https://doi.org/10.15252/emmm.201505815.
Acar M, et al. Rumi is a CAP10 domain glycosyltransferase that modifies notch and is required for notch signaling. Cell. 2008;132(2):247–58. https://doi.org/10.1016/j.cell.2007.12.016.
Servian-Morilla E, et al. POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, alpha-dystroglycan hypoglycosylation and a distinctive radiological pattern. Acta Neuropathol. 2020;139(3):565–82. https://doi.org/10.1007/s00401-019-02117-6.
Logan CV, et al. Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD). Nat Genet. 2011;43(12):1189–92. https://doi.org/10.1038/ng.995.
Pierson TM, et al. Novel SNP array analysis and exome sequencing detect a homozygous exon 7 deletion of MEGF10 causing early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD). Neuromuscul Disord. 2013;23(6):483–8. https://doi.org/10.1016/j.nmd.2013.01.013.
Takayama K, et al. Japanese multiple epidermal growth factor 10 (MEGF10) myopathy with novel mutations: a phenotype-genotype correlation. Neuromuscul Disord. 2016;26(9):604–9. https://doi.org/10.1016/j.nmd.2016.06.005.
Coppens S, et al. A form of muscular dystrophy associated with pathogenic variants in JAG2. Am J Hum Genet. 2021;108(5):840–56. https://doi.org/10.1016/j.ajhg.2021.03.020.
Vieira NM, et al. Jagged 1 rescues the duchenne muscular dystrophy phenotype. Cell. 2015;163(5):1204–13. https://doi.org/10.1016/j.cell.2015.10.049.