The Molecular Basis of G Protein–Coupled Receptor Activation

Annual Review of Biochemistry - Tập 87 Số 1 - Trang 897-919 - 2018
William I. Weis1,2, Brian K. Kobilka1
1Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, California 94305, USA
2Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA

Tóm tắt

G protein–coupled receptors (GPCRs) mediate the majority of cellular responses to external stimuli. Upon activation by a ligand, the receptor binds to a partner heterotrimeric G protein and promotes exchange of GTP for GDP, leading to dissociation of the G protein into α and βγ subunits that mediate downstream signals. GPCRs can also activate distinct signaling pathways through arrestins. Active states of GPCRs form by small rearrangements of the ligand-binding, or orthosteric, site that are amplified into larger conformational changes. Molecular understanding of the allosteric coupling between ligand binding and G protein or arrestin interaction is emerging from structures of several GPCRs crystallized in inactive and active states, spectroscopic data, and computer simulations. The coupling is loose, rather than concerted, and agonist binding does not fully stabilize the receptor in an active conformation. Distinct intermediates whose populations are shifted by ligands of different efficacies underlie the complex pharmacology of GPCRs.

Từ khóa


Tài liệu tham khảo

Maguire ME, 1976, Mol. Pharmacol., 12, 332

De Lean A, 1980, J. Biol. Chem., 255, 7108, 10.1016/S0021-9258(20)79672-9

10.1110/ps.03259908

10.1016/j.bpc.2013.10.002

10.1038/nature06522

10.1124/mol.63.6.1256

10.1016/S1043-9471(05)80049-7

10.1126/science.289.5480.739

10.1006/jmbi.2001.5295

10.1038/nature06325

10.1146/annurev.biophys.050708.133655

10.1038/nprot.2016.088

10.1371/journal.pone.0046039

10.1126/science.1150609

10.1016/j.str.2012.04.010

10.1126/science.1150577

10.1038/nature10136

10.1126/science.1202793

10.1016/j.str.2016.09.015

10.1038/nature10867

10.1038/nature18324

10.1038/nature11896

10.1038/nature09665

10.1038/nature18966

10.1038/nature07330

10.1038/nature09789

10.1038/nature09795

10.1146/annurev-pharmtox-010716-104710

10.1038/nature09648

10.1016/j.sbi.2011.06.011

10.1038/nature12572

10.1038/nature12735

10.1126/science.aaa5026

10.1038/nature14886

10.1038/nature22327

10.1038/nature22394

10.1038/nature19107

10.1074/jbc.272.5.2587

10.1073/pnas.1100185108

10.1073/pnas.0811065106

10.1016/j.bpj.2009.09.046

10.1074/jbc.M103747200

10.1074/jbc.M112.348565

10.1038/nature10361

10.1038/nature09746

10.1073/pnas.1110499108

10.1016/j.bpj.2014.06.015

10.1126/science.1749933

10.1016/j.str.2011.08.001

10.1021/ja404305k

10.1073/pnas.0802515105

10.1515/hsz-2013-0155

10.1073/pnas.101126198

10.1038/nchembio801

10.1002/anie.201305286

10.1126/science.1215802

10.1073/pnas.1519626112

10.1038/nature17668

10.1016/j.cell.2015.04.043

10.1074/jbc.M112.406371

10.1038/nature22354

10.1038/ncomms2046

10.1016/j.cell.2013.01.008

10.1002/anie.201406603

10.1248/cpb.c12-01059

10.1038/nchembio.1960

10.1038/nature16577

10.1038/nature14680

10.1038/nature18636

10.1038/nature14656

10.1016/j.cell.2017.07.002

10.1016/j.cell.2017.03.047