The Microwave-Drill

E. Jerby1, V. Dikhtyar1, O. Aktushev1, U. Grosglick1
1Faculty of Engineering, Tel-Aviv University Israel

Tóm tắt

Summary form only given, as follows. The microwave drill is a novel method to cut and drill into hard non-conductive materials by localized microwave energy. The method has been tested on various materials, including concrete, glass, silicon, ceramics, and ceramic coatings. It yields holes in diameters from 0.3 mm to > 10 mm (in concrete). A theoretical model simulates the electromagnetic (EM) wave dissipation coupled to thermal effects in lossy dielectric media in which the dielectric properties depend on temperature. The simulation describes the rapid thermal runaway above a critical temperature, and the creation of the hot spot enabling the microwave-drill operation. However, our experiments attain the hot-spot melting stage faster than predicted by the EM model. We attribute the boosting effect to the plasma created at the early stage of the microwave-drill ignition. This plasma may increase the local temperature toward the critical point, thus accelerating the microwave-drill operation.

Từ khóa

#Plasma temperature #Dielectric losses #Microwave theory and techniques #Building materials #Dielectric materials #Concrete #Ceramics #Electromagnetic coupling #Plasma accelerators #Materials testing

Tài liệu tham khảo

grosglick, 0 jerby, 2001, Proc 8th Int'l Conf Microwave Heating jerby, 2000