The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

Plant Methods - Tập 13 - Trang 1-20 - 2017
Thomas Burrell1, Susan Fozard2, Geoff H. Holroyd2, Andrew P. French3,4, Michael P. Pound3,4, Christopher J. Bigley2, C. James Taylor1, Brian G. Forde2
1Engineering Department, Lancaster University, Lancaster, UK
2Lancaster Environment Centre, Lancaster University, Lancaster, UK
3The Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Nottingham, UK
4School of Computer Science, University of Nottingham, Nottingham, UK

Tóm tắt

Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m2, giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability.

Tài liệu tham khảo

Fonseca S, Rosado A, Vaughan-Hirsch J, Bishopp A, Chini A. Molecular locks and keys: the role of small molecules in phytohormone research. Front Plant Sci. 2014;5:709. Toth R, van der Hoorn RAL. Emerging principles in plant chemical genetics. Trends Plant Sci. 2010;15:81–8. Cong F, Cheung AK, Huang S-MA. Chemical genetics-based target identification in drug discovery. Ann Rev Pharmacol Toxicol. 2012;52:57–78. Rodriguez-Furlan C, Miranda G, Reggiardo M, Hicks GR, Norambuena L. High throughput selection of novel plant growth regulators: assessing the translatability of small bioactive molecules from Arabidopsis to crops. Plant Sci. 2016;245:50–60. Walsh TA. The emerging field of chemical genetics: potential applications for pesticide discovery. Pest Manag Sci. 2007;63:1165–71. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–71. Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, et al. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol. 2010;6:741–9. Zouhar J, Hicks GR, Raikhel NV. Sorting inhibitors (Sortins): chemical compounds to study vacuolar sorting in Arabidopsis. Proc Natl Acad Sci USA. 2004;101:9497–501. Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem. 2001;276:38837–43. Zhao YD, Dai XH, Blackwell HE, Schreiber SL, Chory J. SIR1, an upstream component in auxin signaling identified by chemical genetics. Science. 2003;301:1107–10. Cutler S, McCourt P. Dude, where’s my phenotype? Dealing with redundancy in signaling networks. Plant Physiol. 2005;138:558–9. Halder V, Kombrink E. Facile high-throughput forward chemical genetic screening by in situ monitoring of glucuronidase-based reporter gene expression in Arabidopsis thaliana. Front Plant Sci. 2015;6:13. Dinh TT, Chen X. Chemical genetic screens using Arabidopsis thaliana seedlings grown on solid medium. In: Hempel JE, Williams CH, Hong CC, editors. Chemical biology: methods and protocols. New York: Springer; 2015. p. 111–25. DeBolt S, Gutierrez R, Ehrhardt DW, Melo CV, Ross L, Cutler SR, et al. Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. Proc Natl Acad Sci USA. 2007;104:5854–9. Yoneda A, Higaki T, Kutsuna N, Kondo Y, Osada H, Hasezawa S, et al. Chemical genetic screening identifies a novel inhibitor of parallel alignment of cortical microtubules and cellulose microfibrils. Plant Cell Physiol. 2007;48:1393–403. Hartman E, Levy C, Kern DM, Johnson MA, Basu A. A rapid, inexpensive, and semi-quantitative method for determining pollen tube extension using fluorescence. Plant Methods. 2014;10:3. Forde BG, Cutler S, Zaman N, Krysan PJ. Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture. Plant J. 2013;75:1–10. Walch-Liu P, Liu L-H, Remans T, Tester M, Forde BG. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol. 2006;47:1045–57. Pound MP, Fozard S, Torres M, Forde BG, French AP. AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping. Plant Methods. 2016;13. doi:10.1186/s13007-017-0161-y. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 1997;9:1963–71. To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, et al. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell. 2004;16:658–71. Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968;50:151–8. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: β-glucuronidase as a sensitive and versatile fusion marker in higher plants. EMBO J. 1987;6:3901–7. Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WTB, Wojciechowski T, et al. Root phenomics of crops: opportunities and challenges. Funct Plant Biol. 2009;36:922–9. Paez-Garcia A, Motes CM, Scheible W-R, Chen R, Blancaflor EB. Root traits and phenotyping strategies for plant improvement. Plants. 2015;4:334–55. Tester M, Morris C. The penetration of light through soil. Plant Cell Environ. 1987;10:281–6. Sun Q, Yoda K, Suzuki H. Internal axial light conduction in the stems and roots of herbaceous plants. J Exp Bot. 2005;56:191–203. Mo M, Yokawa K, Wan YL, Baluska F. How and why do root apices sense light under the soil surface? Front Plant Sci. 2015;6:775 Silva-Navas J, Moreno-Risueno MA, Manzano C, Pallero-Baena M, Navarro-Neila S, Téllez-Robledo B et al. D-Root: a system to cultivate plants with the root in darkness or under different light conditions. Plant J. 2015;84:244–55 Forde BG, Lorenzo H. The nutritional control of root development. Plant Soil. 2001;232:51–68. Gruber BD, Giehl RFH, Friedel S, von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013;163:161–79 Krouk G. Hormones and nitrate: a two-way connection. Plant Mol Biol. 2016;91:599–606. Fleuret F, Li T, Dubout C, Wampler EK, Yantis S, Geman D. Comparing machines and humans on a visual categorization test. Proc Natl Acad Sci USA. 2011;108:17621–5. De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang HM. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 2003;33:543–55. Pitts RJ, Cernac A, Estelle M. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J. 1998;16:553–60. Negi S, Ivanchenko MG, Muday GK. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J. 2008;55:175–87. Kusaczuk M, Bartoszewicz M, Cechowska-Pasko M. Phenylbutyric acid: simple structure—multiple effects. Curr Pharm Des. 2015;21:2147–66. Evans ML, Ishikawa H, Estelle MA. Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild-type and auxin-response mutants. Planta. 1994;194:215–22. Li BH, Li GJ, Kronzucker HJ, Baluska F, Shi WM. Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends Plant Sci. 2014;19:107–14. Knoth C, Salus MS, Girke T, Eulgem T. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis. Plant Physiol. 2009;150:333–47. Narusaka Y, Narusaka M, Abe H, Hosaka N, Kobayashi M, Shiraishi T, et al. High-throughput screening for plant defense activators using a beta-glucuronidase-reporter gene assay in Arabidopsis thaliana. Plant Biotechnol. 2009;26:345–9. Serrano M, Robatzek S, Torres M, Kombrink E, Somssich IE, Robinson M, et al. Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type II complex-derived lipid signals. J Biol Chem. 2007;282:6803–11. Gendron JM, Haque A, Gendron N, Chang T, Asami T, Wang ZY. Chemical genetic dissection of brassinosteroid-ethylene interaction. Mol Plant. 2008;1:368–79. Armstrong JI, Yuan S, Dale JM, Tanner VN, Theologis A. Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis. Proc Natl Acad Sci USA. 2004;101:14978–83. Hayashi K, Jones AM, Ogino K, Yamazoe A, Oono Y, Inoguchi M, et al. Yokonolide B, a novel inhibitor of auxin action, blocks degradation of AUX/IAA factors. J Biol Chem. 2003;278:23797–806. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 1999;99:463–72. Ni DA, Wang LJ, Ding CH, Xu ZH. Auxin distribution and transport during embryogenesis and seed germination of Arabidopsis. Cell Res. 2001;11:273–8. Mounier E, Pervent M, Ljung K, Gojon A, Nacry P. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ. 2014;37:162–74. Cannarozzi G, Plaza-Wuthrich S, Esfeld K, Larti S, Wilson YS, Girma D, et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genom. 2014;15:581. Dastidar MG, Jouannet V, Maizel A. Root branching: mechanisms, robustness, and plasticity. Wiley Interdiscip Rev-Dev Biol. 2012;1:329–43. Kuijken RCP, van Eeuwijk FA, Marcelis LFM, Bouwmeester HJ. Root phenotyping: from component trait in the lab to breeding. J Exp Bot. 2015;66:5389–401. Verbon EH, Liberman LM. Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci. 2016;21:218–29. Lobet G, Pages L, Draye X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 2011;157:29–39. Cai J, Zeng Z, Connor JN, Huang CY, Melino V, Kumar P, et al. RootGraph: a graphic optimization tool for automated image analysis of plant roots. J Exp Bot. 2015;66:6551–62 Nagel KA, Putz A, Gilmer F, Heinz K, Fischbach A, Pfeifer J, et al. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol. 2012;39:891–904. Christian M, Hannah WB, Luethen H, Jones AM. Identification of auxins by a chemical genomics approach. J Exp Bot. 2008;59:2757–67. He WR, Brumos J, Li HJ, Ji YS, Ke M, Gong XQ, et al. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell. 2011;23:3944–60. Surpin M, Rojas-Pierce M, Carter C, Hicks GR, Vasquez J, Raikhel NV. The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc Natl Acad Sci USA. 2005;102:4902–7. MacGregor DR, Deak KI, Ingram PA, Malamy JE. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. Plant Cell. 2008;20:2643–60. Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, et al. The RootChip: an integrated microfluidic chip for plant science. Plant Cell. 2011;23:4234–40. Busch W, Moore BT, Martsberger B, Mace DL, Twigg RW, Jung J, et al. A microfluidic device and computational platform for high-throughput live imaging of gene expression. Nat Methods. 2012;9:1101. Jiang HW, Xu Z, Aluru MR, Dong L. Plant chip for high-throughput phenotyping of Arabidopsis. Lab Chip. 2014;14:1281–93. Serrano M, Kombrink E, Meesters C. Considerations for designing chemical screening strategies in plant biology. Front Plant Sci. 2015;6:131. Stepanova AN, Yun J, Likhacheva AV, Alonso JM. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell. 2007;19:2169–85. Bender KW, Dobney S, Ogunrinde A, Chiasson D, Mullen RT, Teresinski HJ, et al. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca2+ sensor in Arabidopsis. Biochem J. 2014;457:127–36. Shapiro AD, Zhang C. The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in arabidopsis. Plant Physiol. 2001;127:1089–101. Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Xiang CB. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun. 2014;5:5833. Koyama T, Ono T, Shimizu M, Jinbo T, Mizuno R, Tomita K, et al. Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. J Biosci Bioeng. 2005;99:38–42. Guo F-Q, Wang RC, Chen M, Crawford NM. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell. 2001;13:1–18. Remans T, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, et al. The Arabidopsis transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA. 2006;103:19206–11. Colon-Carmona A, You R, Haimovitch-Gal T, Doerner P. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 1999;20:503–8. Li L, Zhang Q, Huang DF. A review of imaging techniques for plant phenotyping. Sensors. 2014;14:20078–111. Fahlgren N, Gehan MA, Baxter I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol. 2015;24:93–9.