The Major Target of the Endogenously Generated Reactive Oxygen Species in Response to Insulin Stimulation Is Phosphatase and Tensin Homolog and Not Phosphoinositide-3 Kinase (PI-3 Kinase) in the PI-3 Kinase/Akt Pathway
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adey, N. B., Huang, L., Ormonde, P. A., Baumgard, M. L., Pero, R., Byreddy, D. V., Tavtigian, S. V., and Bartel, P. L. (2000). Threonine phosphorylation of the MMAC1/PTEN PDZ binding domain both inhibits and stimulates PDZ binding.Cancer Res.60, 35-37.
Alessi, D. R., James, S. R., Downes, C. P., Holmes, A. B., Gaffney, P. R., Reese, C. B., and Cohen, P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha.Curr. Biol.7, 261-269.
Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B., and Rhee, S. G. (1997). EGF-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation.J. Biol. Chem.272, 217-221.
Bae, Y. S., Sung, J. Y., Kim, O. S., Kim, Y. J., Hur, K. C., Kazlauskas, A., and Rhee, S. G. (2000). PDGF-induced H2O2production requires the activation of phosphatidylinositol 3-kinase.J. Biol. Chem.275, 10527-10531.
Banfi, B., Clark, R. A., Steger, K., and Krause, K. H. (2003). Two novel proteins activate superoxide generation by the NADPH oxidase NOX1.J. Biol. Chem.278, 3510-3513.
Bastola, D. R., Pahwa, G. S., Lin, M. F., and Cheng, P. W. (2002). Downregulation of PTEN/MMAC/TEP1 expression in human prostate cancer cell line DU145 by growth stimuli.Mol. Cell. Biochem.236, 75-81.
Biedler, J. L., Roffler-Tarlov, S., Schachner, M., and Freedman, L. S. (1978). Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones.Cancer Res.38, 3751-3757.
Bokoch, G. M., and Diebold, B. A. (2002). Current molecular models for NADPH oxidase regulation by Rac GTPase.Blood100, 2692-2696.
Cantley, L. C., and Neel, B. G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway.Proc. Natl. Acad. Sci. USA96, 4240-4245.
Clark, S. F., Martin, S., Carozzi, A. J., Hill, M. M., and James, D. E. (1998). Intracellular localization of phosphatidylinositide 3-kinase and insulin receptor substrate-1 in adipocytes: potential involvement of a membrane skeleton.J. Cell Biol.140, 1211-1225.
Czech, M. P., Lawrence, J. C., Jr., and Lynn, W. S. (1974). Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin.Proc. Natl. Acad. Sci. USA71, 4173-4177.
Denu, J. M., and Tanner, K. G. (1998). Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.Biochemistry37, 5633-5642.
Franke, T. F., Kaplan, D. R., and Cantley, L. C. (1997). PI3K: downstream AKTion blocks apoptosis.Cell88, 435-437.
Hwang, J. J., Kwon, J. H., Lee, K. Y., and Hur, K. C. (1995). Effet of nerve growth factor, insulin, and extracellular proteins on the neurite outgrowth of SK-N-BE(2) human neuroblastoma cells.Mol. Cell5, 501-507.
Inoue, G., Cheatham, B., Emkey, R., and Kahn, C. R. (1998). Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2.J. Biol. Chem.273, 11548-11555.
Kim, D. W.et al. (2003). RET/PTC (rearranged in transformation/papillary thyroid carcinomas) tyrosine kinase phosphorylates and activates phosphoinositide-dependent kinase 1 (PDK1): an alternative phosphatidylinositol 3-kinase-independent pathway to activate PDK1.Mol. Endocrinol.17, 1382-1394.
Kimura, T., Okajima, F., Sho, K., Kobayashi, I., and Kondo, Y. (1995). Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3′,5′-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative.Endocrinology136, 116-123.
Knebel, A., Rahmsdorf, H. J., Ullrich, A., and Herrlich, P. (1996). Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents.EMBO J.15, 5314-5325.
Konishi, H., Matsuzaki, H., Tanaka, M., Takemura, Y., Kuroda, S., Ono, Y., and Kikkawa, U. (1997). Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27.FEBS Lett.410, 493-498.
Krieger-Brauer, H. I., and Kather, H. (1995). The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines.Biochem. J.307, 543-548.
Krieger-Brauer, H. I., Medda, P. K., and Kather, H. (1997). Insulin-induced activation of NADPH-dependent H2O2generation in human adipocyte plasma membranes is mediated by Galphai2.J. Biol. Chem.272, 10135-10143.
Kurose, K., Zhou, X. P., Araki, T., Cannistra, S. A., Maher, E. R., and Eng, C. (2001). Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels, but not associated with p27 and cyclin D1 expression, in primary epithelial ovarian carcinomas.Am. J. Pathol.158, 2097-2106.
Lee, S. R., Kwon, K. S., Kim, S. R., and Rhee, S. G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with EGF.J. Biol. Chem.273, 15366-15372.
Lee, S. R., Yang, K. S., Kwon, J., Lee, C., Jeong, W., and Rhee, S. G. (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2.J. Biol. Chem.277, 20336-20342.
Leevers, S. J., Vanhaesebroeck, B., and Waterfield, M. D. (1999). Signalling through phosphoinositide 3-kinases: the lipids take centre stage.Curr. Opin. Cell Biol.11, 219-225.
Leslie, N. R., Bennett, D., Lindsay, Y. E., Stewart, H., Gray, A., and Downes, C. P. (2003). Redox regulation of PI 3-kinase signalling via inactivation of PTEN.EMBO J.22, 5501-5510.
Levy-Toledano, R., Taouis, M., Blaettler, D. H., Gorden, P., and Taylor, S. I. (1994). Insulin-induced activation of phosphatidyl inositol 3-kinase. Demonstration that the p85 subunit binds directly to the COOH terminus of the insulin receptor in intact cells.J. Biol. Chem.269, 31178-31182.
Lo, Y. Y., and Cruz, T. F. (1995). Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes.J. Biol. Chem.270, 11727-11730.
Lu, Y.et al. (2003). Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades.J. Biol. Chem.278, 40057-40066.
Maehama, T., and Dixon, J. E. (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.J. Biol. Chem.273, 13375-13378.
Mahadev, K., Wu, X., Zilbering, A., Zhu, L., Lawrence, J. T., and Goldstein, B. J. (2001a). Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes.J. Biol. Chem.276, 48662-48669.
Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B. J. (2001b). Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade.J. Biol. Chem.276, 21938-21942.
McManus, E. J., Collins, B. J., Ashby, P. R., Prescott, A. R., Murray-Tait, V., Armit, L. J., Arthur, J. S., and Alessi, D. R. (2004). The in vivo role of PtdIns(3,4,5)P3binding to PDK1 PH domain defined by knockin mutation.EMBO J.23, 2071-2082.
Meng, T. C., Fukada, T., and Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo.Mol. Cell9, 387-399.
Murata, H., Hresko, R. C., and Mueckler, M. (2003). Reconstitution of phosphoinositide 3-kinase-dependent insulin signaling in a cell-free system.J. Biol. Chem.278, 21607-21614.
Myers, M. P., Pass, I., Batty, I. H., Van der Kaay, J., Stolarov, J. P., Hemmings, B. A., Wigler, M. H., Downes, C. P., and Tonks, N. K. (1998). The lipid phosphatase activity of PTEN is critical for its tumor supressor function.Proc. Natl. Acad. Sci. USA95, 13513-13518.
Nave, B. T., Haigh, R. J., Hayward, A. C., Siddle, K., and Shepherd, P. R. (1996). Compartment-specific regulation of phosphoinositide 3-kinase by PDGF and insulin in 3T3-L1 adipocytes.Biochem. J.318, 55-60.
Ohba, M., Shibanuma, M., Kuroki, T., and Nose, K. (1994). Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells.J. Cell Biol.126, 1079-1088.
Patterson, C., Ruef, J., Madamanchi, N. R., Barry-Lane, P., Hu, Z., Horaist, C., Ballinger, C. A., Brasier, A. R., Bode, C., and Runge, M. S. (1999). Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo.J. Biol. Chem.274, 19814-19822.
Qin, S., Stadtman, E. R., and Chock, P. B. (2000). Regulation of oxidative stress-induced calcium release by phosphatidylinositol 3-kinase and Bruton's tyrosine kinase in B cells.Proc. Natl. Acad. Sci. USA97, 7118-7123.
Sattler, M., Winkler, T., Verma, S., Byrne, C. H., Shrikhande, G., Salgia, R., and Griffin, J. D. (1999). Hematopoietic growth factors signal through the formation of reactive oxygen species.Blood93, 2928-2935.
Shaw, M., Cohen, P., and Alessi, D. R. (1998). The activation of protein kinase B by H2O2or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2.Biochem. J.336, 241-246.
Shepherd, P. R., Withers, D. J., and Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.Biochem. J.333, 471-490.
Sonoda, Y., Watanabe, S., Matsumoto, Y., Aizu-Yokota, E., and Kasahara, T. (1999). FAK is the upstream signal protein of the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis of a human glioblastoma cell line.J. Biol. Chem.274, 10566-10570.
Stephens, L. R., Jackson, T. R., and Hawkins, P. T. (1993). Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system?Biochim. Biophys. Acta1179, 27-75.
Stokoe, D., Stephens, L. R., Copeland, T., Gaffney, P. R., Reese, C. B., Painter, G. F., Holmes, A. B., McCormick, F., and Hawkins, P. T. (1997). Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B.Science277, 567-570.
Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. (1995). Requirement for generation of H2O2for PDGF signal transduction.Science270, 296-299.
Sundaresan, M., Yu, Z. X., Ferrans, V. J., Sulciner, D. J., Gutkind, J. S., Irani, K., Goldschmidt-Clermont, P. J., and Finkel, T. (1996). Regulation of reactive-oxygen-species generation in fibroblasts by Rac1.Biochem. J.318, 379-382.
Tanaka, K.et al. (1999). Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus.J. Biol. Chem.274, 3919-3922.
Van der Kaay, J., Beck, M., Gray, A., and Downes, C. P. (1999). Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses.J. Biol. Chem.274, 35963-35968.
Van Horn, D. J., Myers, M. G., Jr., and Backer, J. M. (1994). Direct activation of the phosphatidylinositol 3′-kinase by the insulin receptor.J. Biol. Chem.269, 29-32.
Vanhaesebroeck, B., Leevers, S. J., Panayotou, G., and Waterfield, M. D. (1997). Phosphoinositide 3-kinases: a conserved family of signal transducers.Trends Biochem. Sci.22, 267-272.
Vazquez, F., Grossman, S. R., Takahashi, Y., Rokas, M. V., Nakamura, N., and Sellers, W. R. (2001). Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex.J. Biol. Chem.276, 48627-48630.
Vazquez, F., Ramaswamy, S., Nakamura, N., and Sellers, W. R. (2000). Phosphorylation of the PTEN tail regulates protein stability and function.Mol. Cell. Biol.20, 5010-5018.
Walker, S. M., Downes, C. P., and Leslie, N. R. (2001). TPIP: a novel phosphoinositide 3-phosphatase.Biochem. J.360, 277-283.
Wang, X., McCullough, K. D., Franke, T. F., and Holbrook, N. J. (2000). EGF receptor-dependent Akt activation by oxidative stress enhances cell survival.J. Biol. Chem.275, 14624-14631.
Yamada, T., Katagiri, H., Asano, T., Tsuru, M., Inukai, K., Ono, H., Kodama, T., Kikuchi, M., and Oka, Y. (2002). Role of PDK1 in insulin-signaling pathway for glucose metabolism in 3T3-L1 adipocytes.Am. J. Physiol.282, E1385-E1394.