The Magnetic Transition of Tcn (n = 1, 2) Induced by the Reaction with Cl and BO2

Journal of Cluster Science - Tập 28 - Trang 905-915 - 2016
Chunmei Tang1, Tao Zheng1, Xue Zhang1
1College of Science, Hohai University, Nanjing, China

Tóm tắt

The Becke’s three parameter hybrid change functional based on the density functional theory method is used to investigate the magnetic transition of Tcn (n = 1, 2) induced by the reaction with Cl and BO2. Simply, the two Tc atoms in the Tc2 dimer are FM coupled, but undergoes antiferromagnetic transition when ionized to the Tc 2 + state. Interestingly, both Cl and BO2, due to their highly electronegative character, can draw electrons from the Tc2 dimer, leaving them in cationic states, therefore, the antiferromagnetic transition can also be induced when Tcn (n = 1, 2) reacts with Cl or BO2. The two Tc atoms are antiferromagnetic coupled in the neutral Tc2Cl, Tc2BO2, (Tc2Cl)2, and anionic (Tc2Cl)2, however are ferromagnetic coupled in Tc2Cl− and Tc2BO2 −. The ability to induce a magnetic transition through a chemical reaction provides a way to synthesize new magnetic materials.

Tài liệu tham khảo

M. Zhang, L. M. He, L. X. Zhao, X. J. Feng, and Y. H. Luo (2009). Tuning magnetic moments by 3d transition-metal-doped Au6 clusters. J. Phys. Chem. C. 113, 6491–6496.

R. Sekine, R. Kondo, T. Yamamoto, and J. Onoe (2003). Geometric and electronic structures of Tc and Mn clusters by density functional calculations. Radiochemistry. 453, 233–236.

P. F. Weck, E. Kim, K. R. Czerwinski, and D. Tománek (2010). Structural and magnetic properties of Tcn@C60 endohedral metalofullerenes: first-principles predictions. Phys. Rev. B. 81, 125448–125452.

V. S. Borisov, I. V. Maznichenko, D. Böttcher, S. Ostanin, A. Ernst, J. Henk, and I. Mertig (2012). Magnetic exchange interactions and antiferromagnetism of ATcO3(A = Ca, Sr, Ba) studied from first principles. Phys. Rev. B. 85, 134410–134417.

C. Priest, Q. Tang, and D. Jiang (2015). Structural evolution of Tcn (n = 4–20) clusters from first-principles global minimization. J. Phys. Chem. A. 119, 8892–8897.

Y. Sun, R. Fournier, and M. Zhang (2009). Structural and electronic properties of 13-atom 4d transition-metal clusters. Phys. Rev. A. 79, 043202–043210.

M. M. Wu, Q. Wang, Q. Sun, and P. Jena (2011). Reaction-induced magnetic transition in Mn2 dimers. J. Phy. Chem. A. 115, 549–555.

H. J. Zhai, L. M. Wang, S. D. Li, and L. S. Wang (2007). Vibrationally resolved photoelectron spectroscopy of BO−and BO2 −: a joint experimental and theoretical study. J. Phys. Chem. A. 111, 1030–1035.

B. Delley (1990). DMOL is a density functional theory (DFT) program distributed by Accelrys Inc. J. Chem. Phys. 92, 508.

E. Zahedi and M. Mozaffari (2014). DFT study of hydrogen storage on Li-and Na-doped C59B heterofullerene. Surf. Rev. Lett. 21, 1450047–1450054.

J. C. Guo, G. M. Ren, C. Q. Miao, W. J. Tian, Y. B. Wu, and X. Wang (2015). CBe5Hnn−4 (n = 2–5): hydrogen-stabilized CBe5 pentagons containing planar or quasi-planar pentacoordinate carbons. J. Phys. Chem. A. 119, 13101–13106.

C. M. Tang, Y. B. Yuan, K. M. Deng, Y. Z. Liu, X. Y. Li, J. L. Yang, and X. Wang (2006). Geometric and electronic properties of endohedral Si@C74. J. Chem. Phys.. doi:10.1063/1.2339022.