The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time

BMC Cancer - Tập 10 - Trang 1-9 - 2010
Junliang Ma1, Lunxu Liu1, Guowei Che1, Nanbin Yu1,2, Fuqiang Dai1,3, Zongbing You4
1Department of Thoracic and Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
2The Third People's Hospital of Zigong City, China
3Daping Hospital, the Third Military Medical University, Chongqing City, China
4Departments of Structural & Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center, LCRC, Tulane Center for Aging, Tulane University School of Medicine, New Orleans, USA

Tóm tắt

Tumor-associated macrophages (TAMs) play an important role in growth, progression and metastasis of tumors. In non-small cell lung cancer (NSCLC), TAMs' anti-tumor or pro-tumor role is not determined. Macrophages are polarized into M1 (with anti-tumor function) and M2 (with pro-tumor function) forms. This study was conducted to determine whether the M1 and M2 macrophage densities in NSCLC are associated with patient's survival time. Fifty patients with an average of 1-year survival (short survival group) and 50 patients with an average of 5-year survival (long survival group) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical double-staining of CD68/HLA-DR (markers for M1 macrophages) and CD68/CD163 (markers for M2 macrophages) was performed and evaluated in a blinded fashion. The M1 and M2 macrophage densities in the tumor islets, stroma, or islets and stroma were determined using computer-aided microscopy. Correlation of the macrophage densities and patient's survival time was analyzed using the Statistical Package for the Social Sciences. Approximately 70% of TAMs were M2 macrophages and the remaining 30% were M1 macrophages in NSCLC. The M2 macrophage densities (approximately 78 to 113 per mm2) in the tumor islets, stroma, or islets and stroma were not significantly different between the long survival and short survival groups. The M1 macrophage densities in the tumor islets (approximately 70/mm2) and stroma (approximately 34/mm2) of the long survival group were significantly higher than the M1 macrophage densities in the tumor islets (approximately 7/mm2) and stroma (13/mm2) of the short survival group (P < 0.001 and P < 0.05, respectively). The M2 macrophage densities were not associated with patient's survival time. The M1 macrophage densities in the tumor islets, stroma, or islets and stroma were positively associated with patient's survival time in a univariate analysis (P < 0.01 or 0.001). In a multivariate Cox proportional hazards analysis, the M1 macrophage density in the tumor islets was an independent predictor of patient's survival time. The M1 macrophage density in the tumor islets is an independent predictor of survival time in NSCLC patients.

Tài liệu tham khảo

Mountain CF: Revisions in the International System for Staging Lung Cancer. Chest. 1997, 111 (6): 1710-1717. 10.1378/chest.111.6.1710. Lewis CE, Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006, 66 (2): 605-612. 10.1158/0008-5472.CAN-05-4005. Mantovani A, Sica A, Locati M: New vistas on macrophage differentiation and activation. Eur J Immunol. 2007, 37 (1): 14-16. 10.1002/eji.200636910. Welsh TJ, Green RH, Richardson D, Waller DA, O'Byrne KJ, Bradding P: Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol. 2005, 23 (35): 8959-8967. 10.1200/JCO.2005.01.4910. Mantovani A, Sica A, Locati M: Macrophage polarization comes of age. Immunity. 2005, 23 (4): 344-346. 10.1016/j.immuni.2005.10.001. Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Zembala M: Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol Lett. 2007, 113 (2): 76-82. 10.1016/j.imlet.2007.07.014. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23 (11): 549-555. 10.1016/S1471-4906(02)02302-5. Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 2003, 3 (1): 23-35. 10.1038/nri978. Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P: Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J. 2009, 33 (1): 118-126. 10.1183/09031936.00065708. Yu N, Pu J, Pu Q, Che G, Zhang S, Liu L: Influence of Tumor Associated Macrophages Distribution on Prognosis of Non-small Cell Lung Cancer. Chin J Clin Thorac Cardiovasc Surg. 2009, 16 (1): 44-47. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L: The origin and function of tumor-associated macrophages. Immunol Today. 1992, 13 (7): 265-270. 10.1016/0167-5699(92)90008-U. Balkwill F, Mantovani A: Inflammation and cancer: back to Virchow?. Lancet. 2001, 357 (9255): 539-545. 10.1016/S0140-6736(00)04046-0. Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML, Lee YC, Yang PC: Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res. 2003, 9 (2): 729-737. Toomey D, Smyth G, Condron C, Kelly J, Byrne AM, Kay E, Conroy RM, Broe P, Bouchier-Hayes D: Infiltrating immune cells, but not tumour cells, express FasL in non-small cell lung cancer: No association with prognosis identified in 3-year follow-up. Int J Cancer. 2003, 103 (3): 408-412. 10.1002/ijc.10836. Ohno S, Inagawa H, Soma G, Nagasue N: Role of tumor-associated macrophage in malignant tumors: should the location of the infiltrated macrophages be taken into account during evaluation?. Anticancer Res. 2002, 22 (6C): 4269-4275. Kim DW, Min HS, Lee KH, Kim YJ, Oh DY, Jeon YK, Lee SH, Im SA, Chung DH, Kim YT, et al: High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. Br J Cancer. 2008, 98 (6): 1118-1124. 10.1038/sj.bjc.6604256. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, et al: Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. 2008, 113 (6): 1387-1395. 10.1002/cncr.23712. Al-Shibli K, Al-Saad S, Donnem T, Persson M, Bremnes RM, Busund LT: The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology. 2009, 55 (3): 301-312. 10.1111/j.1365-2559.2009.03379.x. Geissmann F, Dieu-Nosjean MC, Dezutter C, Valladeau J, Kayal S, Leborgne M, Brousse N, Saeland S, Davoust J: Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med. 2002, 196 (4): 417-430. 10.1084/jem.20020018. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, Yoneda K, Imamura S, Schmitt D, Banchereau J: CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med. 1996, 184 (2): 695-706. 10.1084/jem.184.2.695. Nakamura H, Saji H, Aute I, Kawasaki N, Hosaka M, Ogata A, Saijo T, Kato H: Peripheral leukocytes with HLA-DR+/CD8- phenotype are associated with prognosis in patients with lung cancer. Anticancer Res. 2003, 23 (5b): 4149-4152. Maniecki MB, Moller HJ, Moestrup SK, Moller BK: CD163 positive subsets of blood dendritic cells: the scavenging macrophage receptors CD163 and CD91 are coexpressed on human dendritic cells and monocytes. Immunobiology. 2006, 211 (6-8): 407-417. 10.1016/j.imbio.2006.05.019. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/10/112/prepub