The Kinetic and Mechanistic Evaluation of NMR Spectra. New analytical methods (18)

Wiley - Tập 19 Số 6 - Trang 411-428 - 1980
Gerhard Binsch1, Horst Kessler2
1Institut für Organische Chemie der Universität, Karlstrasse 23, D 8000 München 2. Germany
2Institut für Organische Chemie der Universität, Niederurseler Hang, D 6000 Frankfurt am Main 50 Germany

Tóm tắt

Abstract

In addition to the static parameters of the chemical shifts and coupling constants, which serve as a source of knowledge for molecular structure and stereochemistry, an NMR spectrum can frequently furnish dynamic quantities characterizing relaxation and exchange phenomena. The information about nuclear switching processes has proved to be particularly useful in practice for the detection of internal molecular motions and for the estimation or determination of the corresponding energy barriers. A plethora of studies of this nature has in the past been performed on simple proton spectra. Methodological developments of recent years have led to a significant reduction of the effort required for the quantitative dynamic evaluation of NMR spectra arising from complex spin systems or involving other nuclei. In many cases it has, moreover, become possible to extract detailed mechanistic information inaccessible by other means. The practical execution of such analyses will be explained and illustrated by a selected number of applications.

Từ khóa


Tài liệu tham khảo

Macomber J. D., 1976, The Dynamics of Spectroscopic Transitions

10.1002/9780470147122.ch2

10.1002/omr.1270210914

10.1103/PhysRev.88.1070

10.1063/1.1698874

10.1063/1.1698644

10.1063/1.1743184

10.1021/ja01600a083

10.1021/j100699a054

10.1002/ange.19700820603

10.1002/anie.197002191

10.1039/9781847553614-00163

10.1016/0079-6565(77)80004-6

10.1016/0079-6565(77)80008-3

10.1039/9781847553645-00285

10.1016/B978-0-12-378850-4.50049-3

10.1016/0079-6565(75)80001-X

10.1016/S0066-4103(08)60300-2

10.1016/0022-2364(79)90077-5

10.1002/ange.19710831608

10.1002/anie.197105701

10.1002/cber.19681011004

Kessler H., Chem. Commun., 1968, 475

10.1016/S0040-4020(01)82492-3

10.1002/cber.19711040715

10.1002/cber.19781110716

Binsch G., 1969, Quantum Chem. Progr. Exch., 10, 140

Kleier D. A., 1970, Quantum Chem. Progr. Exch., 10, 165

Stephenson D. S., 1978, Quantum Chem. Progr. Exch., 10, 365

10.1016/0022-2364(78)90084-7

10.1016/0022-2364(79)90106-9

Nakanishi H., Tetrahedron Lett., 1974, 1803

10.1016/S0040-4020(01)90664-7

10.1002/hlca.19740570518

10.1021/ed050p477

10.1021/ja01034a007

Kleier D. A., 1970, J. Magn. Reson., 3, 146

10.1016/0022-2364(78)90291-3

10.1021/ja00837a056

10.1002/ange.19800920421

10.1002/anie.198003011

10.1002/cber.19731060332

Kessler H., 1973, Chimia, 27, 444

10.1002/ange.19730851810

10.1002/anie.197307731

10.1002/ange.19770890422

10.1002/anie.197702561

10.1002/cber.19781110502

10.1002/cber.19781110824

10.1021/ja00502a003

10.1002/mrc.1270110405

10.1021/ja00715a043

10.1021/ja00763a040

10.1002/mrc.1270110404

10.1021/ja00432a053

10.1002/cber.19791121119

10.1016/0022-2364(80)90046-3

Stephenson D. S., 1979, Quantum Chem. Progr. Exch., 11, 378

Binsch G., Computational Methods in Chemistry

10.1021/ar50068a003

10.1016/B978-0-12-378850-4.50048-1

Steigel A., 1978, NMR Basic Principles and Progress, 1

10.1039/9781847553591-00223

10.1039/9781847553607-00141

10.1021/ja00857a012

10.1016/0022-2364(78)90083-5

E. E.Wille D. S.Stephenson P.Capriel G.Binsch unpublished.

Rieker A., Tetrahedron Lett., 1969, 1227

10.1007/3-540-06648-9_7

10.1021/ar50097a005

Haigh C. W., J. Chem. Soc., 1682

10.1063/1.1680153

10.1021/ja00863a033

10.1351/pac197125030573

10.1021/ja01071a046

10.1021/ja01091a015

Oth J. F. M., Tetrahedron Lett., 1966, 3087

Z.Luz R.Naor E.Meirovitch private communication.

10.1016/B978-0-12-378850-4.50058-4

M.Feigel Dissertation Universität Frankfurt 1978.

10.1021/ja00964a031

10.1021/ja00744a021

10.1002/cber.19771100628

10.1021/jo00421a013

10.1002/cber.19751081005

M.Kempf Dissertation Universität Frankfurt 1978.

10.1002/cber.19751081006

10.1002/cber.19751081004

H.Kessler M.Kempf unpublished.

10.1063/1.1685415

10.1063/1.1685798

R. A.Neese Ph. D. Thesis University of California Berkeley 1971.

10.1002/mrc.1270121005

10.1016/0022-2364(80)90123-7

The fact that at the coalescence point of two equally intense singlets the total width equals the sum of the static splitting and the natural width cannot be exploited for bandshape analyses although it is unequestionably very useful for an estimation of a ΔG+value.

10.1002/cber.19791120815

10.1021/ja00435a032

An iterative calculation for an experimental test example of two exchanging singlets with a chemical shift difference of about 50 Hz andW≈ 3W0 in which the dynamic parameterskandW0were confined to the expected domain of 0—5 s−1by means of reflective boundaries [26] yielded that value ofk= 1.26 ± 96424 s−1(correlation coefficient ρ(k W0) = −0.999998); a result that speaks for itself!

Deming W. E., 1943, Statistical Adjustment of Data

G.Binsch 1969 unpublished. Modern versions of this program which is also suitable for the determination of the thermodynamic quantities ΔH0and ΔS0 were written byM. Feigel(Universität Frankfurt) undT. Dürst(Universität München).

10.1021/ja00966a001

10.3891/acta.chem.scand.17-1787

10.1063/1.1734121

10.1063/1.1725295

10.1063/1.1727890

10.1021/ja00980a006

Mann B. E., 1976, J. Magn. Reson., 21, 17

10.1016/0022-2364(77)90121-4

J. Chem. Soc. Chem. Commun., 1977, 626

10.1016/0022-2364(79)90173-2

10.1016/0022-2364(75)90210-3

10.1016/0022-2364(77)90200-1

10.1016/0022-2364(78)90001-X

10.1016/0022-2364(76)90150-5

10.1016/0022-2364(78)90003-3

Grenier‐Loustalot M. F., 1977, Third European Experimental NMR Conference

Careful selection of the temperature is critical. The exchange should still be fast enough so as not to be swamped by relaxation but not so fast that saturation is transferred indiscriminately also to the other positions not connected to the irradiated line by an elementary step.

10.1021/ja00515a053

10.1063/1.438208