The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin

American Association for the Advancement of Science (AAAS) - Tập 310 Số 5754 - Trang 1642-1646 - 2005
Reuben J. Shaw1,2,3,4,5, Katja Lamia1,2,3,4,5, Debbie S. Vasquez1,2,3,4,5, Seung‐Hoi Koo1,2,3,4,5, Nabeel Bardeesy1,2,3,4,5, Ronald A. DePinho1,2,3,4,5, Marc Montminy1,2,3,4,5, Lewis C. Cantley1,2,3,4,5
1Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
2Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
3Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
4Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
5Peptide Biology Laboratories, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

Tóm tắt

The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)–activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element–binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1α expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.

Từ khóa


Tài liệu tham khảo

10.1016/j.cmet.2004.12.003

10.1038/nature02440

10.1074/jbc.C300557200

10.1074/jbc.M402165200

10.1186/1475-4924-2-28

10.1073/pnas.0308061100

10.1016/j.cub.2003.10.031

10.1038/nm788

10.1126/science.1092341

T. Hayashi, M. F. Hirshman, E. J. Kurth, W. W. Winder, L. J. Goodyear, Diabetes47, 1369 (1998).

10.1172/JCI13505

10.1074/jbc.M202489200

10.1074/jbc.M201692200

10.1016/j.bbrc.2003.12.120

10.2337/diabetes.53.12.3258

10.2337/diabetes.54.4.928

10.1016/j.cmet.2005.05.009

10.1074/jbc.M503824200

10.1016/j.cmet.2005.06.005

10.1016/j.molcel.2005.07.012

10.1073/pnas.1533136100

10.1016/S0960-9822(03)00459-7

10.1074/jbc.M501887200

10.1007/s00294-005-0576-2

10.1038/nature01045

Materials and methods are available as supporting materials on Science Online.

J. Huard et al., Gene Ther.2, 107 (1995).

10.1016/S0092-8674(03)00929-2

10.1016/j.ccr.2004.06.007

10.1101/gad.1199104

10.2337/diabetes.54.5.1331

10.1038/35093131

10.1038/nm1044

10.1038/35093050

10.1016/j.cmet.2005.05.004

10.1073/pnas.0730870100

10.1038/nature01667

10.1016/j.cmet.2005.07.002

10.1172/JCI200112876

10.1038/nature03967

10.1016/j.cell.2004.09.015

10.1038/sj.emboj.7600110

10.1172/JCI14178

10.1074/jbc.M408149200

10.1038/sj.emboj.7600667

10.1038/sj.emboj.7600719

10.1038/ng0893-341

10.1016/j.tcb.2005.07.007

R. J. Shaw K. A. Lamia data not shown.

We thank M. Loda for the FAS antibody; J. Luo A. Shaywitz and O. Peroni for technical advice; K. Cichowski for help with the manuscript; D. Gwinn and C. Mealmaker for technical assistance; and the University of Iowa Gene Transfer Vector Core supported in part by NIH and the Roy J. Carver Foundation for adenoviral Cre preparations. This work was supported by grants GM056203 GM37828 and CA84313 from the NIH to L.C.C. M.M. and R.A.D. respectively. M.M. also was supported in part by the Hillblom Foundation.