The Influence of biotinylation of 2F5 antibody on peptide selection from the combinatorial phage library

Allerton Press - Tập 27 - Trang 22-27 - 2012
N. S. Shcherbakova1, A. N. Chikaev1, L. I. Karpenko1, A. A. Il’ichev1
1Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, Russia

Tóm tắt

The effect of biotinylation of monoclonal antibodies (MAbs) on the yield and repertoire of peptides selected by biopanning is discussed in the present study. A comparative analysis of peptides selected from a phage library using the biotinylated and nonbiotinylated MAb 2F5 was performed. The yield of the peptides homologous to the native epitope was observed to be 1.7 times higher for the biotinylated antibodies, whereas the use of the nonbiotinylated antibodies in the enzyme-linked immunoassay (ELISA) resulted in a greater binding capacity of the selected phages with MAb 2F5. It is notable that the phages, displaying peptides that have a fouror five-amino-acid sequence similarity with the native epitope, demonstrate the highest binding affinity to the antibodies. The phages exposing peptides with three-amino-acid sequence similarity exhibit various binding affinities. In summary, the results have revealed that a rational biopanning protocol should be chosen according to the aim of each particular study.

Tài liệu tham khảo

Eroshkin, A.M., Mol. Biol., 1988, vol. 2, pp. 635–644.

Maniatis, T., Fritsch, E. F., and Sambrook, J. Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982. Translated under the title Metody geneticheskoi inzhenerii. Molekulyarnoe klonirovanie, Moscow: Mir, 1984.

Adey, N., Mataragnon, A., Rider, J., et al., Gene, 1995, vol. 156, pp. 27–31.

Amin, N., Agullar, A., Chamacho, F., et al., Malays. J. Med. Sci., 2009, vol. 16, pp. 4–14.

Böttger, V. and Böttger, A., Meth. Mol. Biol., 2009, vol. 524, pp. 181–201.

Casey, J., Coley, A., Parisi, K., et al., Protein Eng. Des. Sel., 2009, vol. 22, pp. 85–91.

Fack, F., Hugle-Durr, B., Song, D., et al., J. Immunol. Meth., 2009, vol. 206, pp. 43–52.

Hüyer-Hansen, G., Hamers, M.J.A.G., Pedersen, A.N., et al., J. Immunol. Meth., 2000, vol. 235, pp. 91–99.

Knittelfelder, R., Riemer, A., and Jensen-Jarolim, E., Expert Opin. Biol. Ther., 2009, vol. 9, pp. 493–506.

Liu, N., Wu, G., Li, H., et al., Int. Immunopharm., 2009, vol. 9, pp. 291–297.

Parker, C., Deterding, L., Hager-Braun, C., et al., J. Virol., 2001, vol. 69, pp. 6609–6617.

Peluso, P., Wilson, D., Do, D., et al., Anal. Biochem., 2003, vol. 312, pp. 113–124.

Scholle, M., Collart, F., and Kay, B., Prot. Expr. Purific., 2004, vol. 37, pp. 243–252.

Scott, J. and Smith, G., Science, 1990, vol. 249, pp. 386–390.

Scott, J. and Craig, L., Curr. Opin. Biotechnol., 1994, vol. 5, pp. 40–48.

Smith, G., Science, 1990, vol. 228, p. 1315.

Songa, H., Luo, W., and Chena, Y., Vet. Microb., 2010, vol. 145, pp. 17–22.

Wallmann, J., Epstein, M., Singh, P., et al., Clin. Exp. Allergy, 2010, vol. 40, pp. 650–658.