Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khuyến nghị đồng thuận của Hội thấp khớp Hồng Kông trong quản lý bệnh Gout
Tóm tắt
Bệnh Gout là một trong những bệnh không lây nhiễm phổ biến nhất tại Hồng Kông. Mặc dù đã có nhiều lựa chọn điều trị hiệu quả, nhưng việc quản lý bệnh Gout tại Hồng Kông vẫn chưa đạt được mức tối ưu. Giống như nhiều quốc gia khác, mục tiêu điều trị ở Hồng Kông thường tập trung vào việc giảm triệu chứng của bệnh Gout mà không điều trị nồng độ urat huyết thanh đến mức mục tiêu. Do đó, bệnh nhân mắc bệnh Gout vẫn tiếp tục chịu đựng các triệu chứng viêm khớp đau đớn, cũng như các biến chứng về thận, chuyển hóa và tim mạch liên quan đến bệnh Gout. Hội thấp khớp Hồng Kông đã dẫn dắt việc phát triển những khuyến nghị đồng thuận này thông qua một bài tập Delphi có sự tham gia của các bác sĩ thấp khớp, bác sĩ chăm sóc sức khỏe ban đầu và các chuyên gia khác tại Hồng Kông. Các khuyến nghị về quản lý bệnh Gout cấp tính, phòng ngừa bệnh Gout, điều trị tình trạng tăng acid uric huyết và các lưu ý, đồng sử dụng thuốc không phải Gout với liệu pháp giảm urat, và lời khuyên về lối sống đã được đưa vào. Bài báo này phục vụ như một hướng dẫn tham khảo cho tất cả các nhà cung cấp dịch vụ y tế khi tiếp xúc với những bệnh nhân có nguy cơ và được biết đến là có tình trạng mãn tính nhưng có thể điều trị này.
Từ khóa
#Gout #quản lý bệnh Gout #khuyến nghị đồng thuận #Hội thấp khớp Hồng Kông #điều trị tăng acid uric huyếtTài liệu tham khảo
Roddy E, Zhang W, Doherty M (2007) The changing epidemiology of gout. Nat Clin Pract Rheumatol 3:443–449. https://doi.org/10.1038/ncprheum0556
Tsoi MF, Chung MH, Cheung BMY et al (2020) Epidemiology of gout in Hong Kong: a population-based study from 2006 to 2016. Arthritis Res Ther 22:1–9. https://doi.org/10.1186/s13075-020-02299-5
Hong Kong Centre for Health Protection (2019) Non-communicable diseases watch gout: no longer the disease of kings. https://www.chp.gov.hk/files/pdf/ncd_watch_april_2019.pdf. Accessed 24 Jul 2022
Kung K, Lam A, Li P (2004) Review of the management of gout in a primary care clinic. Hong Kong Pract 26:301
The Lancet Rheumatology (2019) Big little lies: challenging misperceptions of gout. Lancet Rheumatol 1:e75. https://doi.org/10.1016/S2665-9913(19)30036-0
Khanna D, Khanna PP, Fitzgerald JD et al (2012) 2012 American College of Rheumatology guidelines for management of gout. Part 2: therapy and antiinflammatory prophylaxis of acute gouty arthritis. Arthritis Care Res 64:1447–1461. https://doi.org/10.1002/acr.21773
Hui M, Carr A, Cameron S et al (2017) The British Society for Rheumatology guideline for the management of gout. Rheumatology 56:1056–1059. https://doi.org/10.1093/rheumatology/kex156
Richette P, Doherty M, Pascual E et al (2017) 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 76:29–42. https://doi.org/10.1136/annrheumdis-2016-209707
Khanna D, FitzGerald JD, Khanna PP et al (2012) 2012 American College of Rheumatology guidelines for management of gout. Part I: systematic non-pharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken) 64:1431–1446
FitzGerald JD, Dalbeth N, Mikuls T et al (2020) 2020 American College of Rheumatology guideline for the management of gout. Arthritis Care Res (Hoboken) 72:744–760. https://doi.org/10.1002/acr.24180
The Centre for Evidence-Based Medicine Oxford Centre for Evidence-based Medicine – Levels of evidence (March 2009). https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/. Accessed 24 Jul 2022.
Rai SK, Choi HK, Choi SHJ et al (2018) Key barriers to gout care: a systematic review and thematic synthesis of qualitative studies. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/kex530
van Durme C, van Echteld IAAM, Falzon L et al (2014) Cardiovascular risk factors and comorbidities in patients with hyperuricemia and/or gout: a systematic review of the literature. J Rheumatol Suppl 92:9–14. https://doi.org/10.3899/jrheum.140457
Pillinger MH, Mandell BF (2020) Therapeutic approaches in the treatment of gout. Semin Arthritis Rheum 50:S24–S30. https://doi.org/10.1016/j.semarthrit.2020.04.010
Mirmiran R, Bush T, Cerra MM et al (2018) Joint clinical consensus statement of the American College of Foot and Ankle Surgeons® and the American Association of Nurse Practitioners®: etiology, diagnosis, and treatment consensus for gouty arthritis of the foot and ankle. J Foot Ankle Surg 57:1207–1217. https://doi.org/10.1053/j.jfas.2018.08.018
Sidari A, Hill E (2018) Diagnosis and treatment of gout and pseudogout for everyday practice. Prim Care 45:213–236. https://doi.org/10.1016/j.pop.2018.02.004
Yu K-H, Chen D-Y, Chen J-H et al (2018) Management of gout and hyperuricemia: multidisciplinary consensus in Taiwan. Int J Rheum Dis 21:772–787. https://doi.org/10.1111/1756-185X.13266
Simon Taylor R (2017) BET 1: prednisolone for the treatment of acute gouty arthritis. Emerg Med J 34:687–689. https://doi.org/10.1136/emermed-2017-207129.1
Wilson L, Saseen JJ (2016) Gouty arthritis: a review of acute management and prevention. Pharmacotherapy 36:906–922. https://doi.org/10.1002/phar.1788
Zhang S, Zhang Y, Liu P et al (2016) Efficacy and safety of etoricoxib compared with NSAIDs in acute gout: a systematic review and a meta-analysis. Clin Rheumatol 35:151–158. https://doi.org/10.1007/s10067-015-2991-1
Coburn BW, Mikuls TR (2016) Treatment options for acute gout. Fed Pract 33:35–40
Terkeltaub RA, Furst DE, Bennett K et al (2010) High versus low dosing of oral colchicine for early acute gout flare: twenty-four-hour outcome of the first multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-comparison colchicine study. Arthritis Rheum 62:1060–1068. https://doi.org/10.1002/art.27327
Cipolletta E, Tata LJ, Nakafero G et al (2022) Association between gout fare and subsequent cardiovascular events among patients with gout. JAMA 328:440–450. https://doi.org/10.1001/jama.2022.11390
van Durme CMPG, Wechalekar MD, Buchbinder R et al (2014) Non-steroidal anti-inflammatory drugs for acute gout. Cochrane Database Syst Rev: CD010120. https://doi.org/10.1002/14651858.CD010120.pub2
Wechalekar MD, Vinik O, Moi JHY et al (2014) The efficacy and safety of treatments for acute gout: results from a series of systematic literature reviews including Cochrane reviews on intraarticular glucocorticoids, colchicine, nonsteroidal antiinflammatory drugs, and interleukin-1 inhibitors. J Rheumatol Suppl 92:15–25. https://doi.org/10.3899/jrheum.140458
Schlesinger N, Detry MA, Holland BK et al (2002) Local ice therapy during bouts of acute gouty arthritis. J Rheumatol 29:331–334
Janssen CA, Oude Voshaar MAH, Vonkeman HE et al (2019) Anakinra for the treatment of acute gout flares: a randomized, double-blind, placebo-controlled, active-comparator, non-inferiority trial. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/key402
So A, De Smedt T, Revaz S, Tschopp J (2007) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 9:R28. https://doi.org/10.1186/ar2143
Ottaviani S, Moltó A, Ea H-K et al (2013) Efficacy of anakinra in gouty arthritis: a retrospective study of 40 cases. Arthritis Res Ther 15:R123. https://doi.org/10.1186/ar4303
Loustau C, Rosine N, Forien M et al (2018) Effectiveness and safety of anakinra in gout patients with stage 4–5 chronic kidney disease or kidney transplantation: a multicentre, retrospective study. Jt Bone Spine 85:755–760. https://doi.org/10.1016/j.jbspin.2018.03.015
Ghosh P, Cho M, Rawat G et al (2013) Treatment of acute gouty arthritis in complex hospitalized patients with anakinra. Arthritis Care Res (Hoboken) 65:1381–1384. https://doi.org/10.1002/acr.21989
Chen K, Fields T, Mancuso CA et al (2010) Anakinra’s efficacy is variable in refractory gout: report of ten cases. Semin Arthritis Rheum 40:210–214. https://doi.org/10.1016/j.semarthrit.2010.03.001
Terkeltaub RA, Schumacher HR, Carter JD et al (2013) Rilonacept in the treatment of acute gouty arthritis: a randomized, controlled clinical trial using indomethacin as the active comparator. Arthritis Res Ther 15:R25. https://doi.org/10.1186/ar4159
So A, De Meulemeester M, Pikhlak A et al (2010) Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum 62:3064–3076. https://doi.org/10.1002/art.27600
Schlesinger N, De Meulemeester M, Pikhlak A et al (2011) Canakinumab relieves symptoms of acute flares and improves health-related quality of life in patients with difficult-to-treat Gouty Arthritis by suppressing inflammation: results of a randomized, dose-ranging study. Arthritis Res Ther 13:R53. https://doi.org/10.1186/ar3297
Schlesinger N, Alten RE, Bardin T et al (2012) Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis 71:1839–1848. https://doi.org/10.1136/annrheumdis-2011-200908
Borstad GC, Bryant LR, Abel MP et al (2004) Colchicine for prophylaxis of acute flares when initiating allopurinol for chronic gouty arthritis. J Rheumatol 31:2429–2432
Yamanaka H, Tamaki S, Ide Y et al (2018) Stepwise dose increase of febuxostat is comparable with colchicine prophylaxis for the prevention of gout flares during the initial phase of urate-lowering therapy: results from FORTUNE-1, a prospective, multicentre randomised study. Ann Rheum Dis 77:270–276. https://doi.org/10.1136/annrheumdis-2017-211574
Wortmann RL, Macdonald PA, Hunt B, Jackson RL (2010) Effect of prophylaxis on gout flares after the initiation of urate-lowering therapy: analysis of data from three phase III trials. Clin Ther 32:2386–2397. https://doi.org/10.1016/j.clinthera.2011.01.008
Niel E, Scherrmann J-M (2006) Colchicine today. Jt bone spine 73:672–678. https://doi.org/10.1016/j.jbspin.2006.03.006
Terkeltaub RA (2009) Colchicine update: 2008. Semin Arthritis Rheum 38:411–419. https://doi.org/10.1016/j.semarthrit.2008.08.006
Terkeltaub RA, Furst DE, Digiacinto JL et al (2011) Novel evidence-based colchicine dose-reduction algorithm to predict and prevent colchicine toxicity in the presence of cytochrome P450 3A4/P-glycoprotein inhibitors. Arthritis Rheum 63:2226–2237. https://doi.org/10.1002/art.30389
Schlesinger N, Mysler E, Lin H-Y et al (2011) Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann Rheum Dis 70:1264–1271. https://doi.org/10.1136/ard.2010.144063
Schumacher HRJ, Evans RR, Saag KG et al (2012) Rilonacept (interleukin-1 trap) for prevention of gout flares during initiation of uric acid-lowering therapy: results from a phase III randomized, double-blind, placebo-controlled, confirmatory efficacy study. Arthritis Care Res (Hoboken) 64:1462–1470. https://doi.org/10.1002/acr.21690
Mitha E, Schumacher HR, Fouche L et al (2013) Rilonacept for gout flare prevention during initiation of uric acid-lowering therapy: results from the PRESURGE-2 international, phase 3, randomized, placebo-controlled trial. Rheumatology (Oxford) 52:1285–1292. https://doi.org/10.1093/rheumatology/ket114
Sundy JS, Schumacher HR, Kivitz A et al (2014) Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: results of RESURGE, a phase III, international safety study. J Rheumatol 41:1703–1711. https://doi.org/10.3899/jrheum.131226
Faruque LI, Ehteshami-Afshar A, Wiebe N et al (2013) A systematic review and meta-analysis on the safety and efficacy of febuxostat versus allopurinol in chronic gout. Semin Arthritis Rheum 43:367–375. https://doi.org/10.1016/j.semarthrit.2013.05.004
Sriranganathan MK, Vinik O, Falzon L et al (2014) Interventions for tophi in gout: a Cochrane systematic literature review. J Rheumatol Suppl 92:63–69. https://doi.org/10.3899/jrheum.140464
Ye P, Yang S, Zhang W et al (2013) Efficacy and tolerability of febuxostat in hyperuricemic patients with or without gout: a systematic review and meta-analysis. Clin Ther 35:180–189. https://doi.org/10.1016/j.clinthera.2012.12.011
Sundy JS, Baraf HSB, Yood RA et al (2011) Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA 306:711–720. https://doi.org/10.1001/jama.2011.1169
Tausche A-K, Alten R, Dalbeth N et al (2017) Lesinurad monotherapy in gout patients intolerant to a xanthine oxidase inhibitor: a 6 month phase 3 clinical trial and extension study. Rheumatology (Oxford) 56:2170–2178. https://doi.org/10.1093/rheumatology/kex350
Schumacher HR, Becker MA, Wortmann RL et al (2008) Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum 59. https://doi.org/10.1002/art.24209
Becker MA, Schumacher HR, Wortmann RL et al (2005) Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med 353:2450–2461. https://doi.org/10.1056/NEJMoa050373
Baraf HSB, Becker MA, Gutierrez-Urena SR et al (2013) Tophus burden reduction with pegloticase: results from phase 3 randomized trials and open-label extension in patients with chronic gout refractory to conventional therapy. Arthritis Res Ther 15:R137. https://doi.org/10.1186/ar4318
Marchini GS, Sarkissian C, Tian D et al (2013) Gout, stone composition and urinary stone risk: a matched case comparative study. J Urol 189:1334–1339. https://doi.org/10.1016/j.juro.2012.09.102
Goldfarb DS, MacDonald PA, Gunawardhana L et al (2013) Randomized controlled trial of febuxostat versus allopurinol or placebo in individuals with higher urinary uric acid excretion and calcium stones. Clin J Am Soc Nephrol 8:1960–1967. https://doi.org/10.2215/CJN.01760213
Ettinger B, Tang A, Citron JT et al (1986) Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med 315:1386–1389. https://doi.org/10.1056/NEJM198611273152204
Dalbeth N, Saag KG, Palmer WE et al (2017) Effects of febuxostat in early gout: a randomized, double-blind, placebo-controlled study. Arthritis Rheumatol (Hoboken, NJ) 69:2386–2395. https://doi.org/10.1002/art.40233
Krishnan E (2012) Reduced glomerular function and prevalence of gout: NHANES 2009–10. PLoS One 7. https://doi.org/10.1371/journal.pone.0050046
Siu YP, Leung KT, Tong MKH, Kwan TH (2006) Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis 47:51–59. https://doi.org/10.1053/j.ajkd.2005.10.006
Goicoechea M, De Vinuesa SG, Verdalles U et al (2010) Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 5:1388–1393. https://doi.org/10.2215/CJN.01580210
Levy GD, Rashid N, Niu F, Cheetham TC (2014) Effect of urate-lowering therapies on renal disease progression in patients with hyperuricemia. J Rheumatol 41:955–962. https://doi.org/10.3899/jrheum.131159
Lu C-C, Wu S-K, Chen H-Y et al (2014) Clinical characteristics of and relationship between metabolic components and renal function among patients with early-onset juvenile tophaceous gout. J Rheumatol 41:1878–1883. https://doi.org/10.3899/jrheum.131240
Dalbeth N, House ME, Horne A, Taylor WJ (2013) Reduced creatinine clearance is associated with early development of subcutaneous tophi in people with gout. BMC Musculoskelet Disord 14:363. https://doi.org/10.1186/1471-2474-14-363
Wu EQ, Patel PA, Mody RR et al (2009) Frequency, risk, and cost of gout-related episodes among the elderly: does serum uric acid level matter? J Rheumatol 36:1032–1040. https://doi.org/10.3899/jrheum.080487
Abhishek A, Valdes AM, Zhang W, Doherty M (2016) Association of serum uric acid and disease duration with frequent gout attacks: a case-control study. Arthritis Care Res (Hoboken) 68:1573–1577. https://doi.org/10.1002/acr.22855
Singh JA, Reddy SG, Kundukulam J (2011) Risk factors for gout and prevention: a systematic review of the literature. Curr Opin Rheumatol 23:192–202. https://doi.org/10.1097/BOR.0b013e3283438e13
Campion EW, Glynn RJ, DeLabry LO (1987) Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med 82:421–426. https://doi.org/10.1016/0002-9343(87)90441-4
Shoji A, Yamanaka H, Kamatani N (2004) A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum 51:321–325. https://doi.org/10.1002/art.20405
Ferraz MB, O’Brien B (1995) A cost effectiveness analysis of urate lowering drugs in nontophaceous recurrent gouty arthritis. J Rheumatol 22:908–914
Yu TF, Gutman AB (1961) Efficacy of colchicine prophylaxis in gout. Prevention of recurrent gouty arthritis over a mean period of five years in 208 gouty subjects. Ann Intern Med 55:179–192. https://doi.org/10.7326/0003-4819-55-2-179
Bhole V, de Vera M, Rahman MM et al (2010) Epidemiology of gout in women: fifty-two-year followup of a prospective cohort. Arthritis Rheum 62:1069–1076. https://doi.org/10.1002/art.27338
Yu K-H, Luo S-F (2003) Younger age of onset of gout in Taiwan. Rheumatology (Oxford) 42:166–170. https://doi.org/10.1093/rheumatology/keg035
Matsuo H, Ichida K, Takada T et al (2013) Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci Rep 3:2014. https://doi.org/10.1038/srep02014
Yamanaka H (2011) Gout and hyperuricemia in young people. Curr Opin Rheumatol 23:156–160. https://doi.org/10.1097/BOR.0b013e3283432d35
Wan W, Xu X, Zhao DB et al (2015) Polymorphisms of uric transporter proteins in the pathogenesis of gout in a Chinese Han population. Genet Mol Res 14:2546–2550. https://doi.org/10.4238/2015.March.30.13
Bardin T (2015) Hyperuricemia starts at 360 micromoles (6 mg/dL). Jt Bone Spine 82:141–143
Pascual E, Sivera F (2007) Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann Rheum Dis 66:1056–1058. https://doi.org/10.1136/ard.2006.060368
Perez-Ruiz F, Lioté F (2007) Lowering serum uric acid levels: what is the optimal target for improving clinical outcomes in gout? Arthritis Rheum 57:1324–1328. https://doi.org/10.1002/art.23007
Perez-Ruiz F, Calabozo M, Pijoan JI et al (2002) Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Rheum 47:356–360. https://doi.org/10.1002/art.10511
Perez-Ruiz F, Herrero-Beites AM, Carmona L (2011) A two-stage approach to the treatment of hyperuricemia in gout: the “dirty dish” hypothesis. Arthritis Rheum 63:4002–4006. https://doi.org/10.1002/art.30649
Stamp LK, Chapman PT, Barclay ML et al (2017) A randomised controlled trial of the efficacy and safety of allopurinol dose escalation to achieve target serum urate in people with gout. Ann Rheum Dis 76:1522–1528. https://doi.org/10.1136/annrheumdis-2016-210872.
Cortese M, Riise T, Engeland A et al (2018) Urate and the risk of Parkinson’s disease in men and women. Parkinsonism Relat Disord 52:76–82. https://doi.org/10.1016/j.parkreldis.2018.03.026
Engel B, Gomm W, Broich K et al (2018) Hyperuricemia and dementia – a case-control study. BMC Neurol 18:131. https://doi.org/10.1186/s12883-018-1136-y
Tassaneeyakul W, Jantararoungtong T, Chen P et al (2009) Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics 19:704–709. https://doi.org/10.1097/FPC.0b013e328330a3b8
Stamp LK, Day RO, Yun J (2016) Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nat Rev Rheumatol 12:235–242. https://doi.org/10.1038/nrrheum.2015.132
Saito Y, Stamp LK, Caudle KE et al (2016) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther 99:36–37. https://doi.org/10.1002/cpt.161
Hershfield MS, Callaghan JT, Tassaneeyakul W et al (2013) Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther 93:153–158. https://doi.org/10.1038/clpt.2012.209
Dean L, Kane M (2012) Allopurinol Therapy and HLA-B*58:01 Genotype. In: Pratt VM, Scott SA, Pirmohamed M et al (eds) Bethesda (MD)
Gonzalez-Galarza FF, McCabe A, Dos SEJM et al (2020) Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res 48:D783–D788. https://doi.org/10.1093/nar/gkz1029
Chiu MLS, Hu M, Ng MHL et al (2012) Association between HLA-B*58:01 allele and severe cutaneous adverse reactions with allopurinol in Han Chinese in Hong Kong. Br J Dermatol 167:44–49. https://doi.org/10.1111/j.1365-2133.2012.10894.x
Yu K-H, Yu C-Y, Fang Y-F (2017) Diagnostic utility of HLA-B*5801 screening in severe allopurinol hypersensitivity syndrome: an updated systematic review and meta-analysis. Int J Rheum Dis 20:1057–1071. https://doi.org/10.1111/1756-185X.13143
Jutkowitz E, Dubreuil M, Lu N et al (2017) The cost-effectiveness of HLA-B*5801 screening to guide initial urate-lowering therapy for gout in the United States. Semin Arthritis Rheum 46:594–600. https://doi.org/10.1016/j.semarthrit.2016.10.009
Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N (2014) Cost-effectiveness analysis of HLA-B*5801 testing in preventing allopurinol-induced SJS/TEN in Thai population. PLoS One 9:e94294. https://doi.org/10.1371/journal.pone.0094294
Yang C-Y, Chen C-H, Deng S-T et al (2015) Allopurinol use and risk of fatal hypersensitivity reactions: a nationwide population-based study in Taiwan. JAMA Intern Med 175:1550–1557. https://doi.org/10.1001/jamainternmed.2015.3536
Chung W-H, Chang W-C, Stocker SL et al (2015) Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann Rheum Dis 74:2157–2164. https://doi.org/10.1136/annrheumdis-2014-205577
Fam AG, Dunne SM, Iazzetta J, Paton TW (2001) Efficacy and safety of desensitization to allopurinol following cutaneous reactions. Arthritis Rheum 44:231–238. https://doi.org/10.1002/1529-0131(200101)44:1%3c231::AID-ANR30%3e3.0.CO;2-7
Stamp LK, Taylor WJ, Jones PB et al (2012) Starting dose is a risk factor for allopurinol hypersensitivity syndrome: a proposed safe starting dose of allopurinol. Arthritis Rheum 64:2529–2536. https://doi.org/10.1002/art.34488
Wong CSM, Yeung CK, Chan CY et al (2022) HLA-B*58:01 screening to prevent allopurinol-induced severe cutaneous adverse reactions in Chinese patients with chronic kidney disease. Arch Dermatol Res 314:651–659. https://doi.org/10.1007/s00403-021-02258-3
Kimura K, Hosoya T, Uchida S et al (2018) Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 72:798–810. https://doi.org/10.1053/j.ajkd.2018.06.028
Baker JF, Krishnan E, Chen L, Schumacher HR (2005) Serum uric acid and cardiovascular disease: recent developments, and where do they leave us? Am J Med 118:816–826. https://doi.org/10.1016/j.amjmed.2005.03.043
Pérez Ruiz F, Richette P, Stack AG et al (2019) Failure to reach uric acid target of <0.36 mmol/L in hyperuricaemia of gout is associated with elevated total and cardiovascular mortality. RMD Open 5:e001015. https://doi.org/10.1136/rmdopen-2019-001015
Zhang M, Solomon DH, Desai RJ et al (2018) Assessment of cardiovascular risk in older patients with gout initiating febuxostat versus allopurinol: population-based cohort study. Circulation 138:1116–1126. https://doi.org/10.1161/CIRCULATIONAHA.118.033992
Choi H, Neogi T, Stamp L et al (2018) New perspectives in rheumatology: implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated food and drug administration public safety alert. Arthritis Rheumatol (Hoboken, NJ) 70:1702–1709. https://doi.org/10.1002/art.40583
Lin T-C, Hung LY, Chen Y-C et al (2019) Effects of febuxostat on renal function in patients with chronic kidney disease: a systematic review and meta-analysis. Medicine (Baltimore) 98:e16311. https://doi.org/10.1097/MD.0000000000016311
Sarvepalli PS, Fatima M, Quadri AK et al (2018) Study of therapeutic efficacy of febuxostat in chronic kidney disease stage IIIA to stage VD. Saudi J Kidney Dis Transplant Off Publ Saudi Cent Organ Transplant Saudi Arab 29:1050–1056. https://doi.org/10.4103/1319-2442.243953
Kim S-H, Lee S-Y, Kim J-M, Son C-N (2020) Renal safety and urate-lowering efficacy of febuxostat in gout patients with stage 4–5 chronic kidney disease not yet on dialysis. Korean J Intern Med 35:998–1003. https://doi.org/10.3904/kjim.2018.423
Peng Y-L, Tain Y-L, Lee C-T et al (2020) Comparison of uric acid reduction and renal outcomes of febuxostat vs allopurinol in patients with chronic kidney disease. Sci Rep 10:10734. https://doi.org/10.1038/s41598-020-67026-1
Liu X, Liu K, Sun Q et al (2018) Efficacy and safety of febuxostat for treating hyperuricemia in patients with chronic kidney disease and in renal transplant recipients: a systematic review and meta-analysis. Exp Ther Med 16:1859–1865. https://doi.org/10.3892/etm.2018.6367
Shibagaki Y, Ohno I, Hosoya T, Kimura K (2014) Safety, efficacy and renal effect of febuxostat in patients with moderate-to-severe kidney dysfunction. Hypertens Res 37:919–925. https://doi.org/10.1038/hr.2014.107
Pui K, Gow PJ, Dalbeth N (2013) Efficacy and tolerability of probenecid as urate-lowering therapy in gout; clinical experience in high-prevalence population. J Rheumatol 40:872–876. https://doi.org/10.3899/jrheum.121301
Lee M-HH, Graham GG, Williams KM, Day RO (2008) A benefit-risk assessment of benzbromarone in the treatment of gout. Was its withdrawal from the market in the best interest of patients? Drug Saf 31:643–665. https://doi.org/10.2165/00002018-200831080-00002
Kim SC, Neogi T, Kang EH et al (2018) Cardiovascular risks of probenecid versus allopurinol in older patients with gout. J Am Coll Cardiol 71:994–1004. https://doi.org/10.1016/j.jacc.2017.12.052
Reinders MK, van Roon EN, Jansen TLTA et al (2009) Efficacy and tolerability of urate-lowering drugs in gout: a randomised controlled trial of benzbromarone versus probenecid after failure of allopurinol. Ann Rheum Dis 68:51–56. https://doi.org/10.1136/ard.2007.083071
Reinders MK, van Roon EN, Houtman PM et al (2007) Biochemical effectiveness of allopurinol and allopurinol-probenecid in previously benzbromarone-treated gout patients. Clin Rheumatol 26:1459–1465. https://doi.org/10.1007/s10067-006-0528-3
Stamp LK, Chapman PT, Barclay M et al (2017) Allopurinol dose escalation to achieve serum urate below 6 mg/dL: an open-label extension study. Ann Rheum Dis 76:2065–2070. https://doi.org/10.1136/annrheumdis-2017-211873
Stamp LK, Chapman PT, Barclay M et al (2017) The effect of kidney function on the urate lowering effect and safety of increasing allopurinol above doses based on creatinine clearance: a post hoc analysis of a randomized controlled trial. Arthritis Res Ther 19:283. https://doi.org/10.1186/s13075-017-1491-x
Vázquez-Mellado J, Morales EM, Pacheco-Tena C, Burgos-Vargas R (2001) Relation between adverse events associated with allopurinol and renal function in patients with gout. Ann Rheum Dis 60:981–983. https://doi.org/10.1136/ard.60.10.981
White WB, Saag KG, Becker MA et al (2018) Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med 378:1200–1210. https://doi.org/10.1056/NEJMoa1710895
Mackenzie IS, Ford I, Nuki G et al (2020) Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet (London, England) 396:1745–1757. https://doi.org/10.1016/S0140-6736(20)32234-0
Choi H, Neogi T, Stamp L et al (2018) Implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities (CARES) trial and associated FDA public safety alert. Arthritis Rheumatol (Hoboken, NJ). https://doi.org/10.1002/art.40583
McCormick N, Rai SK, Lu N et al (2020) Estimation of primary prevention of gout in men through modification of obesity and other key lifestyle factors. JAMA Netw Open 3:e2027421. https://doi.org/10.1001/JAMANETWORKOPEN.2020.27421
Choi HK, Atkinson K, Karlson EW, Curhan G (2005) Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study. Arch Intern Med 165:742–748. https://doi.org/10.1001/archinte.165.7.742
Choi HK, Liu S, Curhan G (2005) Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 52:283–289. https://doi.org/10.1002/art.20761
Choi HK, Atkinson K, Karlson EW et al (2004) Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med 350:1093–1103. https://doi.org/10.1056/NEJMoa035700
Faller J, Fox IH (1982) Ethanol-induced hyperuricemia: evidence for increased urate production by activation of adenine nucleotide turnover. N Engl J Med 307:1598–1602. https://doi.org/10.1056/NEJM198212233072602
Gibson T, Rodgers AV, Simmonds HA, Toseland P (1984) Beer drinking and its effect on uric acid. Br J Rheumatol 23:203–209. https://doi.org/10.1093/rheumatology/23.3.203
Puig JG, Fox IH (1984) Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate. J Clin Invest 74:936–941. https://doi.org/10.1172/JCI111512
Yamamoto T, Moriwaki Y, Takahashi S et al (2002) Effect of beer on the plasma concentrations of uridine and purine bases. Metabolism 51:1317–1323. https://doi.org/10.1053/meta.2002.34041
Choi HK, Curhan G (2004) Beer, liquor, and wine consumption and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 51:1023–1029. https://doi.org/10.1002/art.20821
Li R, Yu K, Li C (2018) Dietary factors and risk of gout and hyperuricemia: a meta-analysis and systematic review. Asia Pac J Clin Nutr 27:1344–1356. https://doi.org/10.6133/apjcn.201811_27(6).0022
Ka T, Moriwaki Y, Takahashi S et al (2005) Effects of long-term beer ingestion on plasma concentrations and urinary excretion of purine bases. Horm Metab Res = Horm und Stoffwechselforsch = Horm Metab 37:641–645. https://doi.org/10.1055/s-2005-870540
Moriwaki Y, Ka T, Takahashi S et al (2006) Effect of beer ingestion on the plasma concentrations and urinary excretion of purine bases: one-month study. Nucleosides Nucleotides Nucleic Acids 25:1083–1085. https://doi.org/10.1080/15257770600893990
Caliceti C, Calabria D, Roda A, Cicero AFG (2017) Fructose intake, serum uric acid, and cardiometabolic disorders: a critical review. Nutrients 9. https://doi.org/10.3390/nu9040395
Choi HK, Curhan G (2008) Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 336:309–312. https://doi.org/10.1136/bmj.39449.819271.BE
Hoare C, Li Wan Po A, Williams H (2000) Systematic review of treatments for atopic eczema. Health Technol Assess (Rockv) 4. https://doi.org/10.1016/S0190-9622(02)61464-1
Nielsen SM, Bartels EM, Henriksen M et al (2017) Weight loss for overweight and obese individuals with gout: a systematic review of longitudinal studies. Ann Rheum Dis 76:1870–1882. https://doi.org/10.1136/annrheumdis-2017-211472
Ghang B-Z, Lee JS, Choi J et al (2022) Increased risk of cardiovascular events and death in the initial phase after discontinuation of febuxostat or allopurinol: another story of the CARES trial. RMD Open 8:e001944. https://doi.org/10.1136/rmdopen-2021-001944
Saag KG, Becker MA, White WB et al (2022) Evaluation of the relationship between serum urate levels, clinical manifestations of gout, and death from cardiovascular causes in patients receiving febuxostat or allopurinol in an outcomes trial. Arthritis Rheumatol (Hoboken, NJ) 74:1593–1601. https://doi.org/10.1002/art.42160
Choi HK, Soriano LC, Zhang Y, Rodríguez LAG (2012) Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ 344:d8190. https://doi.org/10.1136/bmj.d8190
Caspi D, Lubart E, Graff E et al (2000) The effect of mini-dose aspirin on renal function and uric acid handling in elderly patients. Arthritis Rheum 43:103–108. https://doi.org/10.1002/1529-0131(200001)43:1%3c103::AID-ANR13%3e3.0.CO;2-C
Zhang Y, Neogi T, Chen C et al (2014) Low-dose aspirin use and recurrent gout attacks. Ann Rheum Dis 73:385–390. https://doi.org/10.1136/annrheumdis-2012-202589
Nardin M, Verdoia M, Pergolini P et al (2016) Serum uric acid levels during dual antiplatelet therapy with ticagrelor or clopidogrel: results from a single-centre study. Nutr Metab Cardiovasc Dis 26:567–574. https://doi.org/10.1016/j.numecd.2016.03.001
Camm AJ, Accetta G, Ambrosio G et al (2017) Evolving antithrombotic treatment patterns for patients with newly diagnosed atrial fibrillation. Heart 103:307–314. https://doi.org/10.1136/heartjnl-2016-309832
Würzner G, Gerster JC, Chiolero A et al (2001) Comparative effects of losartan and irbesartan on serum uric acid in hypertensive patients with hyperuricaemia and gout. J Hypertens 19:1855–1860. https://doi.org/10.1097/00004872-200110000-00021
Chanard J, Toupance O, Lavaud S et al (2003) Amlodipine reduces cyclosporin-induced hyperuricaemia in hypertensive renal transplant recipients. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 18:2147–2153. https://doi.org/10.1093/ndt/gfg341
Shahinfar S, Simpson RL, Carides AD et al (1999) Safety of losartan in hypertensive patients with thiazide-induced hyperuricemia. Kidney Int 56:1879–1885. https://doi.org/10.1046/j.1523-1755.1999.00739.x
