The Hemocompatibility of Nanoparticles: A Review of Cell–Nanoparticle Interactions and Hemostasis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Matus, 2018, Nanotechnology and primary hemostasis: Differential effects of nanoparticles on platelet responses, Vasc. Pharmacol., 101, 1, 10.1016/j.vph.2017.11.004
Brash, J.L. (2018). Blood Compatibility of Nanomaterials. Drug Delivery Nanosystems for Biomedical Applications, Elsevier Inc.. Available online: https://doi.org/10.1016/B978-0-323-50922-0.00002-X.
Ritz, 2015, Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake, Biomacromolecules, 16, 1311, 10.1021/acs.biomac.5b00108
Sun, 2018, Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery, Int. J. Nanomed., 13, 8325, 10.2147/IJN.S173063
Zia, 2018, Platelet aggregation induced by polystyrene and platinum nanoparticles is dependent on surface area, Rsc Adv., 8, 37789, 10.1039/C8RA07315E
Khan, I., Saeed, K., and Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arab. J. Chem.
Gobbo, 2015, Magnetic Nanoparticles in Cancer Theranostics, Theranostics, 5, 1249, 10.7150/thno.11544
Hajipour, 2017, Advances in Alzheimer’s Diagnosis and Therapy: The Implications of Nanotechnology, Trends Biotechnol., 35, 937, 10.1016/j.tibtech.2017.06.002
Sarmah, D., Saraf, J., Kaur, H., Pravalika, K., Tekade, R.K., Borah, A., Kalia, K., Dave, K.R., and Bhattacharya, P. (2017). Stroke Management: An Emerging Role of Nanotechnology. Micromachines, 8.
Szebeni, J., and Haima, P. (2013). Hemocompatibility of medical devices, blood products, nanomedicines and biologicals. TECOmedical Clinical & Technical Review, TECOmedical.
Scanlon, V.C., and Sanders, T. (2018). Essentials of Anatomy and Physiology, F.A. Davis.
Sorlie, 1981, Hematocrit and risk of coronary heart disease: The Puerto Rico Heart Health Program, Am. Hear. J., 101, 456, 10.1016/0002-8703(81)90136-8
Iwata, 2002, Activation of factor IX by erythrocyte membranes causes intrinsic coagulation, Blood Coagul. Fibrinolysis, 13, 489, 10.1097/00001721-200209000-00003
Weisel, 2019, Red blood cells: The forgotten player in hemostasis and thrombosis, J. Thromb. Haemost., 17, 271, 10.1111/jth.14360
Du, 2013, New Insights into the Role of Erythrocytes in Thrombus Formation, Semin. Thromb. Hemost., 40, 72, 10.1055/s-0033-1363470
Mehri, R., Mavriplis, C., and Fenech, M. (2018). Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. PLoS ONE, 13.
Sriram, 2014, Non-Newtonian flow of blood in arterioles: Consequences for wall shear stress measurements, Microcirculation, 21, 628, 10.1111/micc.12141
Walton, 2017, Elevated hematocrit enhances platelet accumulation following vascular injury, Blood, 129, 2537, 10.1182/blood-2016-10-746479
Brass, L.F., Tomaiuolo, M., Welsh, J., Poventud-Fuentes, I., Zhu, L., Diamond, S.L., and Stalker, T.J. (2019). Hemostatic Thrombus Formation in Flowing Blood, Elsevier.
Cooley, 2018, Influence of particle size and shape on their margination and wall-adhesion: Implications in drug delivery vehicle design across nano-to-micro scale, Nanoscale, 10, 15350, 10.1039/C8NR04042G
Wu, 2018, Significantly increased low shear rate viscosity, blood elastic modulus, and RBC aggregation in adults following cardiac surgery, Sci. Rep., 8, 7173, 10.1038/s41598-018-25317-8
Hod, 2015, New perspectives on the thrombotic complications of haemolysis, Br. J. Haematol., 168, 175, 10.1111/bjh.13183
Davenport, 2005, Pathophysiology of hemolytic transfusion reactions, Semin. Hematol., 42, 165, 10.1053/j.seminhematol.2005.04.006
Krajewski, 2013, Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood, Acta Biomater., 9, 7460, 10.1016/j.actbio.2013.03.016
Mocan, 2013, Hemolysis as Expression of Nanoparticles-Induced Cytotoxicity in Red Blood Cells, Biotechnol Mol. Biol. Nanomedicine, 1, 7
Chen, 2015, Nanotoxicity of Silver Nanoparticles to Red Blood Cells: Size Dependent Adsorption, Uptake, and Hemolytic Activity, Chem. Res. Toxicol., 28, 501, 10.1021/tx500479m
Das, 2017, Surface modification minimizes the toxicity of silver nanoparticles: An in vitro and in vivo study, Jbic J. Boil. Inorg. Chem., 22, 893, 10.1007/s00775-017-1468-x
Yu, 2011, Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity, Acs Nano, 5, 5717, 10.1021/nn2013904
Shang, 2014, Engineered nanoparticles interacting with cells: Size matters, J. Nanobiotechnology, 12, 5, 10.1186/1477-3155-12-5
Barshtein, G., Arbell, D., and Yedgar, S. (2018). Hemodynamic Functionality of Transfused Red Blood Cells in the Microcirculation of Blood Recipients. Front. Physiol., 9.
Avsievich, 2019, Mutual interaction of red blood cells influenced by nanoparticles, Sci. Rep., 9, 5147, 10.1038/s41598-019-41643-x
Jiang, 2019, Hemocompatibility investigation and improvement of near-infrared persistent luminescent nanoparticle ZnGa2O4:Cr3+ by surface PEGylation, J. Mater. Chem. B, 7, 3796, 10.1039/C9TB00378A
Neu, 2003, Cell-Cell Affinity of Senescent Human Erythrocytes, Biophys. J., 85, 75, 10.1016/S0006-3495(03)74456-7
Kim, 2014, Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology, Food Chem. Toxicol., 67, 80, 10.1016/j.fct.2014.02.006
Han, 2012, Nanosize and Surface Charge Effects of Hydroxyapatite Nanoparticles on Red Blood Cell Suspensions, Acs Appl. Mater. Interfaces, 4, 4616, 10.1021/am300992x
Yedgar, 2002, The red blood cell in vascular occlusion, Pathophysiol. Haemost. Thromb., 32, 263, 10.1159/000073578
Geekiyanage, 2019, A coarse-grained red blood cell membrane model to study stomatocyte-discocyteechinocyte morphologies, PLoS ONE, 14, 1, 10.1371/journal.pone.0215447
Kim, 2015, Advances in the measurement of red blood cell deformability: A brief review, J. Cell. Biotechnol., 1, 63, 10.3233/JCB-15007
Lin, 2012, The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro, J. Biomed. Opt., 17, 101512, 10.1117/1.JBO.17.10.101512
Zhao, 2011, Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects, Acs Nano, 5, 1366, 10.1021/nn103077k
Kim, 2016, Hemorheological characteristics of red blood cells exposed to surface functionalized graphene quantum dots, Food Chem. Toxicol., 97, 346, 10.1016/j.fct.2016.09.034
He, 2014, The unexpected effect of PEGylated gold nanoparticles on the primary function of erythrocytes, Nanoscale, 6, 9017, 10.1039/C4NR01857E
Guo, 2018, Phosphatidylserine-exposing cells contribute to the hypercoagulable state in patients with multiple myeloma, Int. J. Oncol., 52, 1981
Ran, 2015, Eryptosis Indices as a Novel Predictive Parameter for Biocompatibility of Fe3O4 Magnetic Nanoparticles on Erythrocytes, Sci. Rep., 5, 16209, 10.1038/srep16209
Pan, 2018, Nanoparticle Properties Modulate Their Attachment and Effect on Carrier Red Blood Cells, Sci. Rep., 8, 1615, 10.1038/s41598-018-19897-8
Clemetson, 2012, Platelets and Primary Haemostasis, Thromb. Res., 129, 220, 10.1016/j.thromres.2011.11.036
Broos, 2011, Platelets at work in primary hemostasis, Blood Rev., 25, 155, 10.1016/j.blre.2011.03.002
Holinstat, 2017, Normal platelet function, Cancer Metastasis Rev., 36, 195, 10.1007/s10555-017-9677-x
Mancuso, 2017, Platelets: Much more than bricks in a breached wall, Br. J. Haematol., 178, 209, 10.1111/bjh.14653
Bergmeier, 2018, Platelets at the vascular interface, Res. Pract. Thromb. Haemost., 2, 27, 10.1002/rth2.12061
Zaidi, 2019, Physiology of haemostasis, Anaesth. Intensiv. Care Med., 20, 152, 10.1016/j.mpaic.2019.01.005
Corbalan, 2012, Amorphous silica nanoparticles aggregate human platelets: Potential implications for vascular homeostasis, Int. J. Nanomed., 7, 631
Saikia, 2018, Silica Nanoparticle–Endothelial Interaction: Uptake and Effect on Platelet Adhesion under Flow Conditions, ACS Appl. Bio Mater., 1, 1620, 10.1021/acsabm.8b00466
Feng, 2019, Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway, Part. Fibre Toxicol., 16, 16, 10.1186/s12989-019-0300-x
Wang, 2013, Platelets in Thrombosis and Hemostasis: Old Topic with New Mechanisms, Cardiovasc. Hematol. Disord. Targets, 12, 126, 10.2174/1871529X11202020126
Austin, 2017, Haemostasis, Medicine (United Kingdom), 45, 204
Radomska, 2016, The Nanopharmacology and Nanotoxicology of Nanomaterials: New Opportunities and Challenges, Adv. Clin. Exp. Med., 25, 151, 10.17219/acem/60879
Radomski, 2005, Nanoparticle-induced platelet aggregation and vascular thrombosis, Br. J. Pharmacol., 146, 882, 10.1038/sj.bjp.0706386
Caminade, A.-M., and Majoral, J.-P. (2018). Which Dendrimer to Attain the Desired Properties? Focus on Phosphorhydrazone Dendrimers†. Molecules, 23.
Greish, 2012, Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles, Nanotoxicology, 6, 713, 10.3109/17435390.2011.604442
Jones, 2012, Cationic PAMAM dendrimers disrupt key platelet functions, Mol. Pharm., 9, 1599, 10.1021/mp2006054
Simak, 2017, The effects of nanomaterials on blood coagulation in hemostasis and thrombosis, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology, 9, e1448, 10.1002/wnan.1448
Dobrovolskaia, M.A., and McNeil, S.E. (2016). The effects of engineered nanomaterials on platelets. Handbook of Immunological Properties of Engineered Nanomaterials, World Scientific.
Shah, 2013, Blood protein and blood cell interactions with gold nanoparticles: The need for in vivo studies, BioNanoMaterials, 14, 65, 10.1515/bnm-2012-0003
Gorbet, 2019, The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells, Acta Biomater., 94, 25, 10.1016/j.actbio.2019.06.020
Gieseck, 2018, Type 2 immunity in tissue repair and fibrosis, Nat. Rev. Immunol., 18, 62, 10.1038/nri.2017.90
Baharom, 2017, Human Lung Mononuclear Phagocytes in Health and Disease, Front. Immunol., 8, 499, 10.3389/fimmu.2017.00499
Putzu, 2014, Leucocyte classification for leukaemia detection using image processing techniques, Artif. Intell. Med., 62, 179, 10.1016/j.artmed.2014.09.002
Kowalska, 2010, Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis, Thromb. Res., 125, 292, 10.1016/j.thromres.2009.11.023
Shantsila, 2009, The role of monocytes in thrombotic disorders: Insights from tissue factor, monocyte-platelet aggregates and novel mechanisms, Thromb. Haemost., 102, 916, 10.1160/TH09-01-0023
Laridan, 2019, Neutrophil extracellular traps in arterial and venous thrombosis, Seminars in Thrombosis and Hemostasis, Volume 45, 86, 10.1055/s-0038-1677040
Sotiri, 2019, BloodSurf 2017: News from the blood-biomaterial frontier, Acta Biomater., 87, 55, 10.1016/j.actbio.2019.01.032
Sperling, C., Maitz, M.F., and Werner, C. (2017). Test methods for hemocompatibility of biomaterials. Hemocompatibility of Biomaterials for Clinical Applications: Blood-Biomaterials Interactions, Elsevier Ltd.
Gustafson, 2015, Nanoparticle uptake: The phagocyte problem, Nano Today, 10, 487, 10.1016/j.nantod.2015.06.006
Bartneck, 2010, Rapid Uptake of Gold Nanorods by Primary Human Blood Phagocytes and Immunomodulatory Effects of Surface Chemistry, Acs Nano, 4, 3073, 10.1021/nn100262h
Huang, 2010, Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery (review), Mol. Membr. Boil., 27, 190, 10.3109/09687688.2010.499548
Ge, 2015, Towards understanding of nanoparticle–protein corona, Arch. Toxicol., 89, 519, 10.1007/s00204-015-1458-0
Karmali, 2011, Interactions of nanoparticles with plasma proteins: Implication on clearance and toxicity of drug delivery systems, Expert Opin. Drug Deliv., 8, 343, 10.1517/17425247.2011.554818
Pires, 2017, Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system, Microporous Mesoporous Mater., 251, 181, 10.1016/j.micromeso.2017.06.005
Vu, 2019, Immunoglobulin deposition on biomolecule corona determines complement opsonisation efficiency of preclinical and clinical nanoparticles, Nat. Nanotechnol., 14, 260, 10.1038/s41565-018-0344-3
Lee, 2014, Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity, Int. J. Nanomed., 10, 97
Lin, 2018, The Interplay between Nanoparticles and Neutrophils, J. Biomed. Nanotechnol., 14, 66, 10.1166/jbn.2018.2459
Batt, 2018, TiO2 nanoparticles can selectively bind CXCL8 impacting on neutrophil chemotaxis, Eur. Cells Mater., 35, 13, 10.22203/eCM.v035a02
Kojouri, 2012, The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep, Biol. Trace Elem. Res., 146, 160, 10.1007/s12011-011-9241-4
Durocher, 2017, Evaluation of the in vitro and in vivo proinflammatory activities of gold (+) and gold (−) nanoparticles, Inflamm. Res., 66, 981, 10.1007/s00011-017-1078-7
Herrmann, 2011, Iron core/shell nanoparticles as magnetic drug carriers: Possible interactions with the vascular compartment, Nanomedicine, 6, 1199, 10.2217/nnm.11.33
Tamassia, 2018, Cytokine production by human neutrophils: Revisiting the “dark side of the moon.”, Eur. J. Clin. Investig., 48, e12952, 10.1111/eci.12952
Rungelrath, V., Kobayashi, S.D., and DeLeo, F.R. (2019). Neutrophils in innate immunity and systems biology-level approaches: An update. Wiley Interdiscip Rev Syst Biol Med.
Nolte, 2014, Endotoxins affect diverse biological activity of chitosans in matters of hemocompatibility and cytocompatibility, J. Mater. Sci. Mater. Electron., 25, 2121, 10.1007/s10856-014-5244-y
Sarmento, 2015, Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes, Biomed. Res. Int., 2015, 1
Dolati, 2016, Utilization of nanoparticle technology in rheumatoid arthritis treatment, Biomed. Pharmacother., 80, 30, 10.1016/j.biopha.2016.03.004
Wang, 2008, Genetic Vaccines and Therapy, Genet Vaccines Ther., 9, 1
Mudgal, 2019, Immunomodulatory role of chitosan-based nanoparticles and oligosaccharides in cyclophosphamide-treated mice, Scand. J. Immunol., 89, e12749, 10.1111/sji.12749
Hwang, 2015, Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: Lipid nanoparticles versus polymeric nanoparticles, Int. J. Nanomed., 10, 371
Chua, 2006, Neutrophil Elastase: Mediator of Extracellular Matrix Destruction and Accumulation, Proc. Am. Thorac. Soc., 3, 424, 10.1513/pats.200603-078AW
Sandri, 2019, Direct effects of poly(ε-caprolactone) lipid-core nanocapsules on human immune cells, Nanomedicine, 14, 1429, 10.2217/nnm-2018-0484
Adjei, I.M., Plumton, G., and Sharma, B. (2016). Oxidative Stress and Biomaterials: The Inflammatory Link. Oxidative Stress and Biomaterials, Elsevier Inc.
Pleskova, 2019, Characteristics of quantum dots phagocytosis by neutrophil granulocytes, Heliyon, 5, e01439, 10.1016/j.heliyon.2019.e01439
Skivka, 2018, C60 fullerene and its nanocomplexes with anticancer drugs modulate circulating phagocyte functions and dramatically increase ROS generation in transformed monocytes, Cancer Nanotechnol., 9, 8, 10.1186/s12645-017-0034-0
Chen, 2016, In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response, Biomaterials, 90, 1, 10.1016/j.biomaterials.2016.02.039
Yang, 2016, Cationic liposomes induce cell necrosis through lysosomal dysfunction and late-stage autophagic flux inhibition, Nanomedicine, 11, 3117, 10.2217/nnm-2016-0289
Knudsen, 2015, In vivo toxicity of cationic micelles and liposomes, Nanomed. Nanotechnol. Boil. Med., 11, 467, 10.1016/j.nano.2014.08.004
Bae, 2018, Diacylglycerol in Cationic Nanoparticles Stimulates Oxidative Stress-Mediated Death of Cancer Cells, Lipids, 53, 1059, 10.1002/lipd.12124
Hwang, 2015, The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs), Chem. Interact., 235, 106, 10.1016/j.cbi.2015.04.011
Lotosh, 2019, Cationic Liposomes Cause ROS Generation and Release of Neutrophil Extracellular Traps, Biochem. (Mosc.) Suppl. Ser. A: Membr. Cell Boil., 13, 40, 10.1134/S1990747818040074
Blanco, 2015, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol., 33, 941, 10.1038/nbt.3330
Yong, 2017, Mononuclear phagocytes as a target, not a barrier, for drug delivery, J. Control. Release., 259, 53, 10.1016/j.jconrel.2017.01.024
Zanganeh, S., Spitler, R., Javdani, N., and Ho, J.Q. (2017). How do Nanoparticles (NPs) Pass Barriers?. Drug Delivery Systems, World Scientific.
Li, 2018, Immunotoxicity of Silver Nanoparticles (AgNPs) on the Leukocytes of Common Bottlenose Dolphins (Tursiops truncatus), Sci. Rep., 8, 1
Babin, 2015, Nanoparticles enhance the ability of human neutrophils to exert phagocytosis by a Syk-dependent mechanism, Biochim. Biophys. Acta – Gen. Subj., 1850, 2276, 10.1016/j.bbagen.2015.08.006
Stern, 2008, Role for nanomaterial-autophagy interaction in neurodegenerative disease, Autophagy, 4, 1097, 10.4161/auto.7142
Colognato, 2008, Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro, Mutagenesis, 23, 377, 10.1093/mutage/gen024
Jiang, 2012, Effects of cobalt nanoparticles on human T cells in vitro, Biol. Trace Elem. Res., 146, 23, 10.1007/s12011-011-9221-8
Crist, 2014, Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity, Part. Fibre Toxicol., 9, 20
Sohaebuddin, 2010, Nanomaterial cytotoxicity is composition, size, and cell type dependent, Part. Fibre Toxicol., 7, 1, 10.1186/1743-8977-7-22
Thomas, 2009, Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations, Biomacromolecules, 10, 3207, 10.1021/bm900683r
Futerman, 2004, The cell biology of lysosomal storage disorders, Nat. Rev. Mol. Cell Biol., 5, 554, 10.1038/nrm1423
He, 2009, Regulation Mechanisms and Signaling Pathways of Autophagy, Annu. Rev. Genet., 43, 67, 10.1146/annurev-genet-102808-114910
Chen, 2005, Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells, Biochem. Biophys. Res. Commun., 337, 52, 10.1016/j.bbrc.2005.09.018
Peifley, 2010, Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction, Toxicol. Appl. Pharmacol., 248, 249, 10.1016/j.taap.2010.08.008
Zhang, 2011, Size-dependent in vivo toxicity of PEG-coated gold nanoparticles, Int. J. Nanomedicine, 6, 2071, 10.2147/IJN.S21657
Buzea, 2007, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases, 2, MR17, 10.1116/1.2815690
Zhao, 2011, Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials, Small, 7, 1322, 10.1002/smll.201100001
Simard, 2016, Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils, Toxicol. Vitr., 31, 12, 10.1016/j.tiv.2015.11.003
Best, 2012, The role of particle geometry and mechanics in the biological domain, Adv. Healthc. Mater., 1, 35, 10.1002/adhm.201100012
Decuzzi, 2008, The receptor-mediated endocytosis of nonspherical particles, Biophys. J., 94, 3790, 10.1529/biophysj.107.120238
Gratton, 2008, The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. USA, 105, 11613, 10.1073/pnas.0801763105
Park, 2018, Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice, J. Immunotoxicol., 15, 12, 10.1080/1547691X.2017.1414339
Denis, 2002, Protein adsorption on model surfaces with controlled nanotopography and chemistry, Langmuir, 18, 819, 10.1021/la011011o
Ferraz, 2010, Procoagulant behavior and platelet microparticle generation on nanoporous alumina, J. Biomater. Appl., 24, 675, 10.1177/0885328209338639
Yu, 2012, Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: Their vasculature effect and tolerance threshold, ACS Nano, 6, 2289, 10.1021/nn2043803
Murugadoss, 2017, Toxicology of silica nanoparticles: An update, Arch. Toxicol., 91, 2967, 10.1007/s00204-017-1993-y
Yang, 2010, Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites, J. Appl. Polym. Sci., 116, 2658, 10.1002/app.31787
Ban, 2016, Protein corona over silver nanoparticles triggers conformational change of proteins and drop in bactericidal potential of nanoparticles: Polyethylene glycol capping as preventive strategy, Colloids Surfaces B Biointerfaces., 146, 577, 10.1016/j.colsurfb.2016.06.050
Hakim, 1988, Role of erythrocyte deformability in the acute hypoxic pressor response in the pulmonary vasculature, Respir Physiol., 72, 95, 10.1016/0034-5687(88)90082-5
Guo, 2014, Assessment of the toxic potential of graphene family nanomaterials, J. Food Drug Anal., 22, 105, 10.1016/j.jfda.2014.01.009
Shvedova, 2010, Close Encounters of the Small Kind: Adverse Effects of Man-Made Materials Interfacing with the Nano-Cosmos of Biological Systems, Annu. Rev. Pharmacol. Toxicol., 50, 63, 10.1146/annurev.pharmtox.010909.105819
Palmer, 2014, Annual review of biomedical engineering, Blood Substit., 16, 77