The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon

Journal of Bacteriology - Tập 177 Số 23 - Trang 6928-6936 - 1995
Jörg Stülke1, Isabelle Martin‐Verstraete1, Véronique Charrier1, André Klier1, Josef Deutscher1, Georges Rapoport1
1Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 du Centre National de la Recherche Scientifique (CNRS), Paris, France.

Tóm tắt

The LevR protein is the activator of expression of the levanase operon of Bacillus subtilis. The promoter of this operon is recognized by RNA polymerase containing the sigma 54-like factor sigma L. One domain of the LevR protein is homologous to activators of the NtrC family, and another resembles antiterminator proteins of the BglG family. It has been proposed that the domain which is similar to antiterminators is a target of phosphoenolpyruvate:sugar phosphotransferase system (PTS)-dependent regulation of LevR activity. We show that the LevR protein is not only negatively regulated by the fructose-specific enzyme IIA/B of the phosphotransferase system encoded by the levanase operon (lev-PTS) but also positively controlled by the histidine-containing phosphocarrier protein (HPr) of the PTS. This second type of control of LevR activity depends on phosphoenolpyruvate-dependent phosphorylation of HPr histidine 15, as demonstrated with point mutations in the ptsH gene encoding HPr. In vitro phosphorylation of partially purified LevR was obtained in the presence of phosphoenolpyruvate, enzyme I, and HPr. The dependence of truncated LevR polypeptides on stimulation by HPr indicated that the domain homologous to antiterminators is the target of HPr-dependent regulation of LevR activity. This domain appears to be duplicated in the LevR protein. The first antiterminator-like domain seems to be the target of enzyme I and HPr-dependent phosphorylation and the site of LevR activation, whereas the carboxy-terminal antiterminator-like domain could be the target for negative regulation by the lev-PTS.

Từ khóa


Tài liệu tham khảo

Amster-Choder , O. , F. Houman , and A. Wright . 1989 . Protein phosphorylation regulates transcription of the ~-glucoside utilization operon in E. coli . Cell 58 : 847 - 855 .

Arantès , O. , and D. Lereclus . 1991 . Construction of cloning vectors for Bacillus thuringiensis . Gene 108 : 115 - 119 .

Arnaud , M. , P. Vary , M. Zagorec , A. Klier , M. Débarbouillé , P. Postma , and G. Rapoport . 1992 . Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity . J. Bacteriol. 174 : 3161 - 3170 .

Beijer , L. , and L. Rutberg . 1992 . Utilization of glycerol and glycerol-3- phosphate is differently affected by the phosphotransferase system in Bacillus subtilis . FEMS Microbiol. Lett. 100 : 217 - 220 .

Crutz , A. - M. , M. Steinmetz , S. Aymerich , R. Richter , and D. Le Coq . 1990 . Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system . J. Bacteriol. 172 : 1043 - 1050 .

Cvitkovitch , D. G. , D. A. Boyd , T. Thevenot , and I. R. Hamilton . 1995 . Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system . J. Bacteriol. 177 : 2251 - 2258 .

Débarbouillé , M. , M. Arnaud , A. Fouet , A. Klier , and G. Rapoport . 1990 . The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators . J. Bacteriol. 172 : 3966 - 3973 .

Débarbouillé , M. , I. Martin-Verstraete , A. Klier , and G. Rapoport . 1991 . The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both ~54- and phosphotransferase system-dependent regulators . Proc. Natl. Acad. Sci. USA 88 : 2212 - 2216 .

Débarbouillé , M. , I. Martin-Verstraete , F. Kunst , and G. Rapoport . 1991 . The Bacillus subtilis sigL gene encodes an equivalent of ~54 from Gramnegative bacteria . Proc. Natl. Acad. Sci. USA 88 : 9092 - 9096 .

Deutscher , J. , U. Kessler , C. A. Alpert , and W. Hengstenberg . 1984 . Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-ser-HPr and its possible regulatory function . Biochemistry 23 : 4455 - 4460 .

Deutscher , J. , E. Küster , U. Bergstedt , V. Charrier , and W. Hillen . 1995 . Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria . Mol. Microbiol. 15 : 1049 - 1053 .

Deutscher , J. , B. Pevec , K. Beyreuther , H. -H. Kiltz , and W. Hengstenberg . 1986 . Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr . Biochemistry 25 : 6543 - 6551 .

Deutscher , J. , J. Reizer , C. Fischer , A. Galinier , M. H. Saier , Jr. , and M. Steinmetz . 1994 . Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis . J. Bacteriol. 176 : 3336 - 3344 .

Deutscher , J. , and M. H. Saier , Jr. 1983 . ATP-dependent, protein kinasecatalyzed phosphorylation of a seryl residue in HPr, a phosphoryl carrier of the phosphotransferase system in Streptococcus pyogenes . Proc. Natl. Acad. Sci. USA 80 : 6790 - 6794 .

Deutscher , J. , and H. Sauerwald . 1986 . Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvatedependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system . J. Bacteriol. 166 : 829 - 836 .

Eisermann , R. , J. Deutscher , G. Gonzy-Tréboul , and W. Hengstenberg . 1988 . Site-directed mutagenesis with the ptsH gene of Bacillus subtilis . J. Biol. Chem. 263 : 17050 - 17054 .

Fujita , Y. , and Y. Miwa . 1994 . Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein . J. Bacteriol. 176 : 511 - 513 .

Gay , P. , P. Cordier , M. Marquet , and A. Delobbe . 1973 . Carbohydrate metabolism and transport in Bacillus subtilis: a study of ctr mutations . Mol. Gen. Genet. 121 : 355 - 368 .

Genetics Computer Group. 1991. Program manual for the GCG package version 7 April 1991. Genetics Computer Group Madison Wis.

Gibson T. G. 1984. Studies on the Epstein-Barr virus genome. Ph.D. thesis Cambridge University Cambridge.

Gonzy-Tréboul , G. , J. H. de Waard , M. Zagorec , and P. W. Postma . 1991 . The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains . Mol. Microbiol. 5 : 1241 - 1249 .

Gonzy-Tréboul , G. , and M. Steinmetz . 1987 . Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsI genes and evidence for a crr-like gene . J. Bacteriol. 169 : 2287 - 2290 .

Henkin , T. M. , F. J. Grundy , W. L. Nicholson , and G. H. Chambliss . 1991 . Catabolite repression of ~-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacI and galR repressors . Mol. Microbiol. 5 : 575 - 584 .

Kohlbrecher , D. , R. Eisermann , and W. Hengstenberg . 1992 . Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: molecular cloning and nucleotide sequence of the Staphylococcus carnosus ptsI gene and expression and complementation studies of the gene product . J. Bacteriol. 174 : 2208 - 2214 .

Krüger , S. , and M. Hecker . 1995 . Regulation of the putative bglPH operon for aryl-~-glucoside utilization in Bacillus subtilis . J. Bacteriol. 177 : 5590 - 5597 .

Krüger , S. , J. Stülke , and M. Hecker . 1993 . Carbon catabolite repression of ~-glucanase synthesis in Bacillus subtilis . J. Gen. Microbiol. 139 : 2047 - 2054 .

Kunst , F. , and G. Rapoport . 1995 . Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis . J. Bacteriol. 177 : 2403 - 2407 .

Kunst , F. , M. Steinmetz , J. -A. Lepesant , and R. Dedonder . 1977 . Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168 . Biochimie 59 : 287 - 292 .

Lai , X. , and L. O. Ingram . 1993 . Cloning and sequencing of a cellobiose phosphotransferase system operon from Bacillus stearothermophilus XL-65-6 and functional expression in Escherichia coli . J. Bacteriol. 175 : 6441 - 6450 .

Le Coq , D. , C. Lindner , S. Krüger , M. Steinmetz , and J. Stülke . 1995 . New ~-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions, similar to those of BglF, its Escherichia coli homolog . J. Bacteriol. 177 : 1527 - 1535 .

Lévy , S. , G. -Q. Zeng , and A. Danchin . 1990 . Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon . Gene 86 : 27 - 33 .

Lindner , C. , J. Stülke , and M. Hecker . 1994 . Regulation of xylanolytic enzymes in Bacillus subtilis . Microbiology 140 : 753 - 757 .

Lopez , J. M. , and B. Thoms . 1977 . Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis . J. Bacteriol. 129 : 217 - 224 .

Martin , I. , M. Débarbouillé , E. Ferrari , A. Klier , and G. Rapoport . 1987 . Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase . Mol. Gen. Genet. 208 : 177 - 184 .

Martin , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1989 . Induction and metabolic regulation of levanase synthesis in Bacillus subtilis . J. Bacteriol. 171 : 1885 - 1892 .

Martin-Verstraete I. Unpublished results.

Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1990 . Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon . J. Mol. Biol. 214 : 657 - 671 .

Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1992 . Mutagenesis of the Bacillus subtilis ``~12, ~24'' promoter of the levanase operon and evidence for the existence of an upstream activating sequence . J. Mol. Biol. 226 : 85 - 99 .

Martin-Verstraete , I. , M. Débarbouillé , A. Klier , and G. Rapoport . 1994 . Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon . J. Mol. Biol. 241 : 178 - 192 .

Martin-Verstraete , I. , J. Stülke , A. Klier , and G. Rapoport . 1995 . Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon . J. Bacteriol. 177 : 6919 - 6927 .

Mattoo , R. L. , and E. G. Waygood . 1983 . An enzymatic method for [32P] phosphoenolpyruvate synthesis . Anal. Biochem. 128 : 245 - 249 .

Miller J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.

Postma , P. W. , J. W. Lengeler , and G. R. Jacobson . 1993 . Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria . Microbiol. Rev. 57 : 543 - 594 .

.Reizer J. M. Arnaud and M. Débarbouillé. Unpublished results.

Reizer , J. , S. L. Sutrina , M. H. Saier , Jr. , G. C. Stewart , A. Peterkofsky , and P. Reddy . 1989 . Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr . EMBO J. 8 : 2111 - 2120 .

Roosien , F. F. , J. Brink , and G. T. Robillard . 1983 . A simple procedure for the synthesis of [32P]phosphoenolpyruvate via the pyruvate kinase exchange reaction at equilibrium . Biochim. Biophys. Acta 760 : 185 - 187 .

Roy , A. , C. Haziza , and A. Danchin . 1983 . Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region . EMBO J. 2 : 791 - 797 .

Saier , M. H. 1989 . Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphenolpyruvate: sugar phosphotransferase system . Microbiol. Rev. 53 : 109 - 120 .

Saier , M. H. , and J. Reizer . 1992 . Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate:sugar phosphotransferase system . J. Bacteriol. 174 : 1433 - 1438 .

Sambrook J. E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual 2nd ed. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.

Sanger , F. , S. Nicklen , and A. R. Coulson . 1977 . DNA sequencing with chain-terminating inhibitors . Proc. Natl. Acad. Sci. USA 74 : 5463 - 5467 .

Schnetz , K. , and B. Rak . 1990 . ~-Glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control . Proc. Natl. Acad. Sci. USA 87 : 5074 - 5078 .

Schnetz , K. , C. Toloczyki , and B. Rak . 1987 . ~-Glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes . J. Bacteriol. 169 : 2579 - 2590 .

Stülke J. 1993. Mechanismen der Regulation der ~-Glucanase-Synthese in Bacillus subtilis. Ph.D. thesis Ernst-Moritz-Arndt-Universität Greifswald Germany.

Tangney , M. , C. J. Buchanan , F. G. Priest , and W. J. Mitchell . 1992 . Maltose uptake and its regulation in Bacillus subtilis . FEMS Microbiol. Lett. 97 : 191 - 196 .

Trieu-Cuot , P. , and P. Courvalin . 1983 . Nucleotide sequence of the Streptococcus faecalis plasmid encoding the 3~5~-aminoglycoside phosphotransferase type III . Gene 23 : 331 - 341 .

Weigel , N. , D. A. Powers , and S. Roseman . 1982 . Sugar transport by the bacterial phosphotransferase system: primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium . J. Biol. Chem. 257 : 14499 - 14509 .

Weinrauch , Y. , T. Msadek , F. Kunst , and D. Dubnau . 1991 . Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis . J. Bacteriol. 173 : 5685 - 5693 .

Zukowski , M. M. , L. Miller , P. Cogswell , K. Chen , S. Aymerich , and M. Steinmetz . 1990 . Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes . Gene 90 : 153 - 155 .