The Functional Metabolism and Molecular Biology of Vitamin D Action

Springer Science and Business Media LLC - Tập 7 - Trang 20-41 - 2009
Lori A. Plum1, Hector F. DeLuca1
1Department of Biochemistry, University of Wisconsin-Madison, Madison, USA

Tóm tắt

The evolution of our understanding of the biological impact of vitamin D is briefly reviewed, with a focus on the physiology and endocrinology of the vitamin D system. This chapter attempts to bring the molecular discoveries in vitamin D metabolism and mechanisms of action into focus on known physiology and endocrinology. The latest developments on metabolism of vitamin D, the enzymes involved, and the genes responsible are presented. The impact of the molecular discoveries on current views of the importance of vitamin D in public health is also presented.

Tài liệu tham khảo

Mellanby E. An experimental investigation on rickets. Lancet. 1919;1:407–12. McCollum EV, Simmonds N, Becker JE, et al. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53:293–312. Huldshinsky K. Heilung von rachitis durch kunstlickhe hohensonne. Dtsch Med Wochenschr. 1919;45:712–3. Chick H, Palzell EJ, Hume EM. Studies of rickets in Vienna 1919–1922. Medical Research Council; 1923. Hess A. The history of rickets. In: Hess A, editor. Rickets, including osteomalacia and tetany. Philadelphia: Lee & Febiger; 1929. p. 22–37. Sebrell WH, Harris RS. Vitamin D group. The vitamins. New York: Academic Press; 1954. p. 1131–266. Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:405–22. Scriver CR, Reade TM, DeLuca HF, et al. Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978;299:976–9. Fraser D, Kooh SW, Kind HP, et al. Pathogenesis of hereditary vitamin D-dependent rickets: An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N Engl J Med. 1973;289:817–22. Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1α-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(8):3177–82. Porcu L, Meloni A, Casula L, et al. A novel splicing defect (IVS6 + 1G—>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest. 2002;25:557–60. Wang X, Zhang MYH, Miller WL, et al. Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab. 2002;87(6):2424–30. Wang JT, Lin C-J, Burridge SM, et al. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63:1694–702. Fu GK, Lin D, Zhang MYH, et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11:1961–70. Kitanaka S, Murayama A, Sakaki T, et al. No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab. 1999;84:4111–7. Kitanaka S, Takeyama K-I, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61. Yoshida T, Monkawa T, Tenenhouse HS, et al. Two novel 1α-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I. Kidney Int. 1998;54:1437–43. Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res. 1999;14:730–9. Brommage R, Jarnagin K, DeLuca HF, et al. 1-hydroxylation but not 24-hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol. 1983;244:E298–304. Eil C, Lieberman UA, Rosen JF, et al. A cellular defect in hereditary vitamin D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981;304:1588–91. Bell NH, Hamstra AJ, DeLuca HF. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298:996–9. Rosen JF, Fleischman AR, Finberg L, et al. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatrics. 1979;94:729–35. Marx SJ, Liberman UA, Eil C, et al. Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res. 1984;40:589–620. Wiese RJ, Goto H, Prahl JM, et al. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol. 1993;90:197–201. Liberman UA, Marx SJ. Vitamin D dependent rickets. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 1st ed. Richmond: William Byrd Press; 1990. p. 178–82. Liberman UA. Vitamin D-resistant diseases. J Bone Miner Res. 2007;22(S2):V105–7. Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1983;246:E493–8. DeLuca HF. Mechanism of action and metabolic fate of vitamin D. Vitam Horm. 1967;25:315–67. DeLuca HF, Schnoes HK. Vitamin D: recent advances. Ann Rev Biochem. 1983;52:411–39. Schachter D, Rosen SM. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959;196:357–62. Higaki M, Takahashi M, Suzuki T, et al. Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol. 1965;11:261–5. Martin DL, DeLuca HF. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969;134:139–48. Walling MW, Rothman SS. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol. 1969;217:1144–8. Wasserman RH, Kallfelz FA, Comar CL. Active transport of calcium by rat duodenum in vivo. Science. 1961;133:883–4. Schachter D. Vitamin D and the active transport of calcium by the small intestine. In: Wasserman RH, editor. The transfer of calcium and strontium across biological membranes. New York: Academic Press; 1963. p. 197–210. Chen TC, Castillo L, Korycka-Dahl M, et al. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974;104:1056–60. Walling MW. Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Norman AW, Schaefer K, Coburn JW, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Berlin: Walter de Gruyter; 1977. p. 321–30. Harrison HE, Harrison HC. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol. 1962;201:1007–12. Nicolaysen R, Eeg-Larsen N. The mode of action of vitamin D. In: Wolstenholme GWE, O’Connor CM, editors. Ciba foundation symposium on bone structure and metabolism. Boston: Little, Brown, and Co.; 1956. p. 175–86. Yamamoto M, Kawanobe Y, Takahashi H, et al. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13. Carlsson A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand. 1952;26:212–20. Rasmussen H, DeLuca H, Arnaud C, et al. The relationship between vitamin D and parathyroid hormone. J Clin Invest. 1963;42:1940–6. Morii H, Lund J, Neville PF, et al. Biological activity of a vitamin D metabolite. Arch Biochem Biophys. 1967;120(3):508–12. Steenbock H, Herting DC. Vitamin D and growth. J Nutr. 1955;57:449–68. Cramer JW, Steenbock H. Calcium metabolism and growth in the rat on a low phosphorus diet as affected by vitamin D and increases in calcium intake. Arch Biochem Biophys. 1956;63:9–13. Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys. 1996;334:223–34. Demay MB, Kiernan MS, DeLuca HF, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89:8097–101. Silver J, Naveh-Many T, Mayer H, et al. Regulation of vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78:1296–301. DeLuca HF. The transformation of a vitamin into a hormone—the vitamin D story. Harvey Lect. 1981;75:333–79. DeLuca HF. The vitamin D-calcium axis—1983. In: Rubin RP, Weiss GB, Putney Jr JW, editors. Calcium in biological systems, vol. 53. New York: Plenum Publishing Corp; 1985. p. 491–511. Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15. (Epub 2006, April 5). Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):562–658. Bellin SA, Herting DC, Cramer JW, et al. The effect of vitamin D on urinary citrate in relation to calcium phosphorus and urinary phosphorus. Arch Biochem Biophys. 1954;80:18–23. Neville PF, DeLuca HF. The synthesis of [1, 2-3H]vitamin D3 and the tissue localization of a 0.25 μg (10 IU) dose per rat. Biochemistry. 1966;5:2201–7. Norman AW, Lund J, DeLuca HF. Biologically active forms of vitamin D3 in kidney and intestine. Arch Biochem Biophys. 1964;108:12–21. Lund J, DeLuca HF. Biologically active metabolites of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966;7:739–44. DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc. 1974;33:2211–9. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69:842–56. Windus A, Bock F. Uber das provitamin aus dem sterin der schweineschwarte. Z Physiol Chem. 1937;245:168–70. Esvelt RP, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys. 1978;188:282–6. Windus A, Schenck F, Weder Fv. Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin. Hoppe-Seylers Z Physiol Chem. 1936;241:100–3. Velluz L, Amiard G. Chimie organique-le precalciferol. Compt Rend. 1949;228:692–4. Holick MF, Clark MB. The photobiogenesis and metabolism of vitamin D. Fed Proc. 1978;37:2567–74. Ponchon G, DeLuca HF, Suda T. Metabolism of [1, 2-3H-vitamin D3 and [26,27-3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys. 1970;141:397–408. Horsting M, DeLuca HF. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun. 1969;36:251–6. Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(13):664–73. Guo Y-D, Strugnell S, Back DW, et al. Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci USA. 1993;90:8668–72. Pikuleva IA, Bjorkhem I, Waterman MR. Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys. 1997;343(1):123–30. Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12. Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81. Ohyama Y, Yamasaki T. Eight cytochrome P450 s catalyze vitamin D metabolism. Front Biosci. 2004;9:3007–18. Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature. 1970;228:764–6. Gray R, Boyle I, DeLuca HF. Vitamin D metabolism: the role of kidney tissue. Science. 1971;172:1232–4. Boyle IT, Miravet L, Gray RW, et al. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology. 1972;90:605–8. Holick MF, Garabedian M, DeLuca HF. 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science. 1972;176:1146–7. Wong RG, Norman AW, Reddy CR, et al. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest. 1972;51:1287–91. Dardenne O, Prud’Homme J, Arabian A. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–41. Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA. 2001;98(13):7498–503. Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88:491S–9S. Bikle DD, Chang S, Crumrine D, et al. 25 Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol. 2004;122:984–92. Hewison M, Adams JS. Extra-renal 1α-hydroxylase activity and human disease. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 79. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1379–400. Barbour GL, Coburn JW, Slatopolsky E, et al. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3. Jones G, Ramshaw H, Zhang A, et al. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology. 1999;140(7):3303–10. Reeve L, Tanaka Y, DeLuca HF. Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo. J Biol Chem. 1983;258(6):3615–7. Shultz TD, Fox J, Heath H 3rd, et al. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci USA. 1983;80(6):1746–50. Vanhooke JL, Prahl JM, Kimmel-Jehan C, et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc Natl Acad Sci USA. 2006;103(1):75–80. Pedersen JI, Shobaki HH, Holmberg I, et al. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1983;258:742–6. Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–66. Akiyoshi-Shibata M, Sakaki T, Ohyama Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem. 1994;224:335–43. Beckman MJ, Tadikonda P, Werner E, et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry. 1996;35:8465–72. Makin G, Lohnes D, Byford V, et al. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989;262(1):173–80. Reddy GS, Tserng KY. Calcitroic acid end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9. Esvelt RP, Rivizzani MA, Paaren HE. Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem. 1981;46:456–8. Onisko BL, Esvelt RP, Schnoes HK, et al. Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry. 1980;19:4124–30. Rasmussen H, Bordier P. Vitamin D and bone. Metab Bone Dis Relat Res. 1978;1:7–13. Ornoy A, Goodwin D, Noff D, Edelstein S. 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 1978;276:517–9. Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr. 1977;107:1918–26. Garabedian M, Lieberherr M, Nguyen TM, et al. In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res. 1978;135:241–8. Henry HL, Norman AW. Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science. 1978;201:835–7. Jarnagin K, Brommage R, DeLuca HF. 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol. 1983;244:E290–7. Halloran BP, DeLuca HF, Barthell E. An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology. 1981;108:2067–71. Miller SC, Halloran BP, DeLuca HF. Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tissue Int. 1981;33:489–97. St-Arnaud R, Arabian A, Glorieux FH. Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. In: ASBMR 18th Annual Meeting. Seattle, WA, p. S126. St-Arnaud R, Arabian A, Travers R. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66. Brown EM, Gamba G, Riccardi D. Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80. Omdahl JL, Gray RW, Boyle IT, et al. Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nature New Biol. 1972;237:63–4. Garabedian M, Holick MF, DeLuca HF, et al. Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA. 1972;69:1673–6. Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nature New Biol. 1973;241:163–6. Garabedian M, Tanaka Y, Holick MF, et al. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7. Forte LR, Nickols GA, Anast CS. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3′, 5′monophosphate excretion. J Clin Invest. 1976;57:559–68. Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973;154:566–74. Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1-hydroxylase by phosphate depletion. J Biol Chem. 1976;251:3158–61. Hughes MR, Brumbaugh PF, Haussler MR. Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science. 1975;190:578–80. Gray RW. Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology. 1987;121:504–12. Halloran BP, Spencer EM. Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor-1. Endocrinology. 1988;123:1225–9. Spencer EM, Tobiassen O. The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology. 1981;108:1064–70. Gray RW. Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int. 1981;33:485–8. Pahuja DN, DeLuca HF. Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol. 1981;23:345–50. Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J. 1980;280:277. Liu S, Zhou J, Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49. Tanaka Y, Frank H, DeLuca HF. Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology. 1973;92:417–22. Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys. 1975;171:521–6. Tanaka Y, DeLuca HF. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science. 1974;183:1198–200. Shinki T, Jin CH, Nishimura A. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992;267:13757–62. Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA. 1994;91:900–2. Ohyama Y, Ozono K, Uchida M. Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994;269:10545–50. Wu SX, Finch J, Zhong M. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys. 1996;40:F203–8. Brenza HL, Kimmel-Jehan C, Jehan F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA. 1998;95:1387–91. Brenza HL. Regulation of 25-hydroxyvitamin D3-1α-hydroxylase gene expression. PhD Thesis. University of Wisconsin-Madison; 2002. Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86:9770–3. Healy KD, Zella JB, Prahl JM, et al. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA. 2003;100(17):9733–7. Sandgren ME, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA. 1990;87(11):4312–4. Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology. 1990;126(2):1031–5. Beckman MJ, DeLuca HF. Regulation of renal vitamin D receptor is an important determinant of 1α, 25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys. 2002;401(1):44–52. Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990;86:1313–9. Stumpf WE, Sar M, DeLuca HF. Sites of action of 1,25(OH)2vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Matthews JL, editors. Hormonal control of calcium metabolism. Amsterdam, Oxford, Princeton: Excerpta Medica; 1981. p. 222–9. Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci. 1975;16:353. Kream BE, Reynolds RD, Knutson JC. Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys. 1976;176:779–87. Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA. 1988;85:3294–8. Burmester JK, Wiese RJ, Maeda N, et al. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA. 1988;85:9499–502. Pike JW, Shevde NK. The vitamin D receptor. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 11. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 167–91. McDonnell DP, Scott RA, Kerner SA, et al. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol. 1989;3:635–44. Umesono K, Murakami KK, Thompson CC. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65:1255–66. Zella LA, Kim S, Shevde NK, et al. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231–47. Kim S, Yamazaki M, Zella LA. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86. Carlberg C, Seuter S. The vitamin D receptor. Dermatol Clin. 2007;25:515–23. Kutuzova GD, DeLuca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432(2):152–66. Kutuzova GD, DeLuca HF. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol. 2007;218(1):37–44. Chen KS, DeLuca HF. Cloning of the human 1α,25-dihydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995;1263(1):1–9. Carlberg C, Dunlop TW, Frank C. Molecular basis of the diversity of vitamin D target genes. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 18. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 313–25. Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun. 1999;257:719–23. Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86(24):9770–3. Naveh-Many T, Marx R, Keshet E. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86(6):1968–75. Huang L, Xu J, Wood DJ, et al. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–7. Shevde NK, Plum LA, Clagett-Dame M, et al. A potent analog of 1α, 25-dihydroxyvitamin D3 selectively induced bone formation. Proc Natl Acad Sci USA. 2002;99(21):13487–91. Fleet JC. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr. 2004;134:3215–8. Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41. Demay MB. Mouse models of vitamin D receptor ablation. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 20. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 341–9. Nemere I, Yoshimoto Y, Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology. 1984;115(4):1476–83. Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocrine Rev. 2005;26(5):662–87. Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92. Binderup L, Binderup E, Godtfredsen WO. Development of new vitamin D analogs. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 84. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1489–510. Kissmeyer A-M, Binderup L. Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol. 1991;41(11):1601–6. Segaert S, Duvold LB. Calcipotriol cream: a review of its use in the management of psoriasis. J Dermatolog Treat. 2006;17(6):327–37. Sicinski RR, Prahl JM, Smith CM. New 1α, 25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem. 1998;41(23):4662–74. Ke HZ, Qi H, Crawford DT, et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J Bone Miner Res. 2005;20:1742–55. Plum LA, Fitzpatrick LA, Ma X, et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int. 2006;17(5):704–15. Slatopolsky E, Finch JL, Brown AJ. Effect of 2-methylene-19-nor(20S)-1α-hydroxy-bishomopregnacalciferol (2MbisP), an analog of vitamin D, on secondary hyperparathyroidism. J Bone Miner Res. 2007;22:686–94. DeLuca HF, Plum LA, Clagett-Dame M. Selective analogs of 1α, 25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J Steroid Biochem Mol Biol. 2007;103(3–5):263–8. Brown AJ, Slatopolsky E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab. 2007;3(2):134–44. Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis. 1995;26(5):852–60. Tocchini-Valentini G, Rochel N, Wurtz JM, et al. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA. 2001;98(10):5491–6. Tocchini-Valentini G, Rochel N, Wurtz J-M, et al. Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues calcipotriol and seocalcitol, receptor agonists of clinical importance. Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification. J Med Chem. 2004;47:1956–61. Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9. Vanhooke JL, Benning MM, Bauer CB, et al. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry. 2004;43(14):4101–10. Vanhooke JL, Tadi BP, Benning MM, et al. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007;460:161–5. Van den Bemd GC, Pols HA, Birkenhäger JC, et al. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA. 1996;93(20):10685–90. Väisänen S, Juntunen K, Itkonen A, et al. Conformational studies of human vitamin-D receptor by antipeptide antibodies, partial proteolytic digestion and ligand binding. Eur J Biochem. 1997;248(1):156–62. Castillo AI, Sánchez-Martinez R, Jiménez-Lara AM, et al. Characterization of vitamin D receptor ligands with cell-specific and dissociated activity. Mol Endocrinol. 2006;20(12):3093–104. Yamamoto H, Shevde NK, Warrier A, et al. 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem. 2003;278(34):31756–65. Peleg S, Sastry M, Collins ED. Distinct conformational changes induced by 20-epi analogues of 1α, 25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem. 1995;270(18):10551–8. Christakos S, Norman AW. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979;89(1):56–63. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8. Evans KN, Bulmer JN, Kilby MD, et al. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004;11(5):263–71. Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83(6):1903–15. Perez A, Raab R, Chen TC. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(6):1070–8. Pèrez A, Chen TC, Turner A. Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(2):238–46. Yang S, Smith C, Prahl JM, et al. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys. 1993;303(1):98–106. Yang S, Smith C, DeLuca HF. 1α, 25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta. 1993;1158(3):279–86. Niino M, Fukazawa T, Kikuchi S. Therapeutic potential of vitamin D for multiple sclerosis. Curr Med Chem. 2008;15:499–505. DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2569–85. Tai K, Need AG, Horowitz M, Chapman IM. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition. 2008;24:269–85. Abe J, Nakamura K, Takita Y. Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1α, 25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo). 1990;6(1):21–31. Deeb K, Trump DL, Johnson CS. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700. Garland CF, Gorham ED, Mohr SB. Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol. 2007;103(3–5):708–11. Gorham ED, Garland CF, Garland FC. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6. Munger KL, Levin LI, Hollis BW. Elevated serum 25-hydroxyvitamin D predicts a decreased risk of MS. Mult Scler. 2007;13:280–307. Giovannucci E, Liu Y, Hollis BW, et al. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–80. Sayre RM, Dowdy JC, Shepherd JG. Reintroduction of a classic vitamin D ultraviolet source. J Steroid Biochem Mol Biol. 2007;103(3–5):686–8. Rajakumar K, Greenspan SL, Thomas SB, et al. SOLAR ultraviolet radiation and vitamin D a historical perspective. Am J Public Health. 2007;97(10):1746–54. Lim HW, Carucci JA, Spencer JM, et al. Commentary: a responsible approach to maintaining adequate serum vitamin D levels. J Am Acad Dermatol. 2007;57:594–5. Rosenstreich S, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–87. Vieth R. The mechanisms of vitamin D toxicity. Bone Miner. 1990;11(3):267–72. Shepard RM, DeLuca HF. Determination of vitamin D and its metabolites in plasma. Methods Enzymol. 1980;67:393–413. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8. Aksnes L, Rodland O, Aarskog D. Serum levels of vitamin D3 and 25-hydroxyvitamin D3 in elderly and young adults. Bone Miner. 1988;3:351–7. Clemens TL, Adams JS, Henderson SL, et al. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1981;1(8263):74–6. Matsuoka LY, Wortsman J, Haddad JG, et al. Skin types and epidermal photosynthesis of vitamin D3. J Am Acad Dermatol. 1990;23:525–6. Matsuoka LY, Wortsman J, Haddad JG, et al. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol. 1991;127:536–8. Liel Y, Ulmer E, Shary J, et al. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201. Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3. (Erratum: Am J Clin Nutr 2003;77:1342). Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8. Loré F, Di Cairano G, Periti P, et al. Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int. 1982;34:539–41. Baran DT, Milne ML. 1,25 Dihydroxyvitamin D-induced inhibition of 3H-25 hydroxyvitamin D production by the rachitic rat liver in vitro. Calcif Tissue Int. 1983;35(4–5):461–4. Bell NH, Shaw S, Turner RT. Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest. 1984;74:1540–4. Halloran BP, Bikle DD, Levens MJ, et al. Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate. J Clin Invest. 1986;78:622–8. Berlin T, Björkhem I. On the regulatory importance of 1,25-dihydroxyvitamin D3 and dietary calcium on serum levels of 25-hydroxyvitamin D3 in rats. Biochem Biophys Res Commun. 1987;144(2):1055–8. Halloran BP, Castro ME. Vitamin D kinetics in vivo: effect of 1,25-dihydroxyvitamin D administration. Am J Physiol. 1989;256:E686–91. Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest. 1972;51(4):742–8. Hahn TJ, Hendin BA, Scharp CR, et al. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900–4. Hahn TJ, Hendin BA, Scharp CR. Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med. 1975;292:550–4. Stamp TCB, Round JM, Rowe DJF, et al. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4:9–12. Bouillon R, Reynaert J, Claes JH. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D3 calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41:1130–5. Jubitz W, Haussler MR, McCain TA. Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab. 1977;44(4):617–21. Gascon-Barré M, Delvin EE, Glorieux FH, et al. Influence of vitamin D3 status, phenobarbital, and diphenylhydantoin treatment on the plasma 25-hydroxyvitamin D3 concentrations in the rat. Can J Physiol Pharmacol. 1981;59(10):1073–81. Sambrook P. Glucocorticoids and vitamin D. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 73. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1239–51. Preece MA, Tomlinson S, Ribot CA, et al. Studies of vitamin D deficiency in man. Q J Med. 1975;XLIV(176):575–89. New series. Baker MR, Peacock M, Nordin BEC. The decline in vitamin D status with age. Age Ageing. 1980;9:249–52. Omdahl JL, Garry PJ, Hunsaker LA. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr. 1982;36:1225–33. Need AG, Morris HA, Horowitz M, et al. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58:882–5. Preece MA, Ford JA, McIntosh WB. Vitamin D deficiency among Asian immigrants to Britain. Lancet. 1973;1(7809):907–10. Bell NH, Greene A, Epstein S, et al. Evidence of alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3. Pietrek J, Kokot F, Kuska J. Kinetics of serum 25-hydroxyvitamin D in patients with acute renal failure. Am J Clin Nutr. 1978;31:1919–26. Hidiroglou M, Williams CJ, Ivan M. Pharmacokinetics and amounts of 25-hydroxycholecalciferol in sheep affected by osteodystrophy. J Dairy Sci. 1979;62:567–71. Khamiseh G, Vaziri ND, Oveisi F. Vitamin D absorption, plasma concentration and urinary excretion of 25-hydroxyvitamin D in nephritic syndrome. Proc Soc Exp Biol Med. 1991;196:210–3. Fox J, Della-Santina CP. Oral verapamil and calcium and vitamin D metabolism in rats: effect of dietary calcium. Am J Physiol. 1989;257:E632–8. Clements MR, Johnson L, Fraser DR. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987;325:62–5. Vieth R, Fraser D, Kooh SW. Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr. 1987;117:914–8. Dominguez JH, Gray RW, Lemann J Jr. Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab. 1976;45(5):1056–68. Bell NH, Epstein S, Greene A. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370–3. Compston JE, Vedi S, Ledger JE. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–32363. Hey H, Stokholm KH, Lund BJ. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes. 1982;6:469–73. Kubota M, Ohno J, Shiina Y, et al. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology. 1982;110(6):1950–6. Delvin EE, Gilbert M, Pere MC, et al. In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol. 1988;10:451–9. Paulson SK, DeLuca HF, Battaglia F. Plasma levels of vitamin D metabolites in fetal and pregnant ewes. Proc Soc Exp Biol Med. 1987;185(3):267–71. Paulson SK, Ford KK, Langman CB. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol. 1990;258:E158–62. Omdahl JL, Jelinek G, Eaton RP. Kinetic analysis of 25-hydroxyvitamin D3 metabolism in strontium-induced rickets in the chick. J Clin Invest. 1977;60:1202–10. Gupta MM, Round JM, Stamp TCB. Spontaneous cure of vitamin-D deficiency in Asians during summer in Britain. Lancet. 1974;1(7858):586–8. Haddad JG, Stamp TCB. Circulating 25-hydroxyvitamin D in man. Am J Med. 1974;57:57–62. Stamp TCB, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974;247:563–5. McLaughlin M, Raggatt PR, Brown DJ, et al. Seasonal variations in serum 25-hydroxycholecalciferol in healthy people. Lancet. 1974;1(7857):536–8. Pettifor JM, Ross FP, Solomon L. Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J. 1978;1(6116):826–7. Hidiroglou M, Proulx JG, Roubos D. 25-Hydroxyvitamin D in plasma of cattle. J Dairy Sci. 1979;62:1076–80. Juttmann JR, Visser TJ, Buurman C, et al. Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J. 1981;282:1349–52. Chesney RW, Rosen JF, Hamstra AJ. Absence of seasonal variation in serum concentrations of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin-D in summer. J Clin Endocrinol Metab. 1981;53(1):139–42. Smith BS, Wright H. Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec. 1984;115:537–8. Van der Klis FRM, Jonxis JHP, van Doormaal JJ, et al. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curaçao. Br J Nutr. 1996;75:637–46. O’Leary TJ, Jones G, Yip A, et al. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med. 1986;315(12):727–30. Barré PE, Gascon-Barré M, Meakins JL, et al. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987;82(6):1259–62. Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med. 1989;111(5):437–8. Henry HL. The 25-hydroxyvitamin D 1α-hydroxylase. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 5. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 69–83. Baksi SN, Kenny AD. Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Am J Physiol. 1981;241(4):E275–80. Tanaka Y, Castillo L, DeLuca HF. Control of renal vitamin D hydroxylases in birds by sex hormones. Proc Natl Acad Sci USA. 1976;73(8):2701–5. Haussler MR, Hughes MR, McCain TA, et al. 1,25-Dihydroxyvitamin D3: mode of action in intestine and parathyroid glands, assay in humans and isolation of its glycoside from Solanum malacoxylon. Calcif Tissue Res. 1977;22((Suppl)):1–18. Pike JW, Toverud S, Boass A, et al. Circulating 1α,25-(OH)2D during physiological states of calcium stress. In: Norman A, Schaefer K, Coburn J, DeLuca H, Fraser D, Grigoleit HG, Herrath DV, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism (Proceedings of the Third workshop on vitamin D). New York: De Gruyter; 1977. p. 187–9. Gallagher JC, Riggs BL, Eisman J, et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients—effect of age and dietary calcium. J Clin Invest. 1979;64(3):729–36. Chesney RW, Rosen JF, Hamstra AJ, et al. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child. 1980;134(2):135–9. Lund B, Clausen N, Lund B, et al. Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol. 1980;94:426–9. Seino Y, Shimotsuji T, Yamaoka K, et al. Plasma 1,25-dihydroxyvitamin D concentrations in cords, newborns, infants, and children. Calcif Tissue Int. 1980;30:1–3. Gray RW. Effects of age and sex on the regulation of plasma 1,25-(OH)2D by phosphorus in the rat. Calcif Tissue Int. 1981;33(5):477–84. Gray RW, Gambert SR. Effect of age on plasma 1,25-(OH)2 vitamin D in the rat. Age. 1982;5(2):54–6. Manolagas SC, Culler FL, Howard JE, et al. The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endocrinol Metab. 1983;56:751–60. Armbrecht HJ, Forte LR, Halloran BP. Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol. 1984;246:E266–70. Epstein S, Bryce G, Hinman JW, et al. The influence of age on bone mineral regulating hormones. Bone. 1986;7:421–5. Buchanan JR, Myers CA, Greer RBIII. Effect of declining renal function on bone density in aging women. Calcif Tissue Int. 1988;43:1–6. Fox J. Production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 during maturation in rats: studies using a rapid, primed-infusion technique. Horm Metab Res. 1990;22:278–82. Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1986;63(3):766–9. Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab. 1988;66(5):934–8. Saggese G, Bertelloni S, Baroncelli GI, et al. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D3 levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993;147(3):270–3. Boyle IT, Gray RW, DeLuca HF. Regulation by calcium of in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proc Natl Acad Sci USA. 1971;68(9):2131–4. Morrissey RL, Wasserman RH. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971;220(5):1509–15. Haussler MR, Baylink DJ, Hughes MR. The assay of 1α,25-dihydroxyvitamin D3: physiologic and pathologic modulation of circulating hormone levels. Clin Endocrinol. 1976;5:151s–65s. Hughes MR, Baylink DJ, Jones PG, et al. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1α, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976;58:61–70. Taylor CM, Caverzasio J, Jung A. Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int. 1983;24:37–42. Fox J, Ross R. Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholecalciferol in pigs. J Endocrinol. 1985;105:169–73. Paulson SK, Kenny AD. Effect of dietary mineral and vitamin D content and parathyroidectomy on the plasma disappearance rate of 1,25-dihydroxyvitamin D3 in rats. Biopharm Drug Dispos. 1985;6:359–72. Jongen MJ, Bishop JE, Cade C, et al. Effect of dietary calcium, phosphate and vitamin D deprivation on the pharmacokinetics of 1,25-dihydroxyvitamin D3 in the rat. Horm Metab Res. 1987;19:481–5. Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem. 1976;251(10):3158–61. Gray RW, Wilz DR, Caldas AE, et al. The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 1977;45:299–306. Gray RW, Garthwaite TL, Phillips LS. Growth hormone and triiodothyronine permit an increase in plasma 1,25(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif Tissue Int. 1983;35:100–6. Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab. 1985;61:601–6. Rader JI, Baylink DJ, Hughes MR, et al. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979;236(2):E118–22. Insogna KL, Broadus AE, Gertner JM. Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest. 1983;71:1561–9. Lufkin EG, Kumar R, Heath HIII. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22. Maierhofer WJ, Gray RW, Lemann J Jr. Phosphate deprivation increases serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int. 1984;25:571–5. Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9. Portale AA, Halloran BP, Murphy MM, et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77:7–12. Halloran BP, Barthell EN, DeLuca HF. Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA. 1979;76(11):5549–53. Kumar R, Cohen WR, Silva P, et al. Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest. 1979;63:342–4. Steichen JJ, Tsang RC, Gratton TL, et al. Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med. 1980;302(6):315–9. Wieland P, Fischer JA, Trechsel U, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol. 1980;239(5):E385–90. Mawer EB, Backhouse J, Hill LF, et al. Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med. 1975;48:349–65. Kaplan RA, Haussler MR, Deftos LJ, et al. The role of 1α, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977;59:756–60. Lambert PW, Hollis BW, Bell NH, et al. Demonstration of a lack of change in serum 1α, 25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. J Clin Invest. 1980;66:782–91. Piel CF, Doorf BS, Avioli LV. Metabolism of tritiated 25-hydroxycholecalciferol in chronically uremic children before and after successful renal homotransplantation. J Clin Endocrinol Metab. 1973;37:944–8. Eisman JA, Hamstra AJ, Kream BE, et al. A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys. 1976;176(1):235–43. Christiansen C, Christensen MS, Melsen F, et al. Mineral metabolism in chronic renal failure with specific reference to serum concentration of 1,25(OH)2D and 24,25(OH)2D. Clin Nephrol. 1981;15(1):18–22. Juttmann JR, Buurman CJ, De Kam E, et al. Serum concentrations of metabolites of vitamin D in patients with chronic renal failure (CRF). Consequences for the treatment with 1α-hydroxy derivatives. Clin Endocrinol (Oxf). 1981;14(3):225–36. Papapoulos SE, Clemens TL, Sandler LM, et al. The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholcalciferol after an oral dose. Clin Sci. 1982;62:427–9. Pitts TO, Piraino BH, Mitro R. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab. 1988;67:876–81. Dusso A, Lopez-Hilker S, Lewis-Finch J, et al. Metabolic clearance rate and production rate of calcitriol in uremia. Kidney Int. 1989;35:860–4. Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989;36:234–9. Portale AA, Booth BE, Tsai HC, et al. Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int. 1982;21:627–43. Wilson L, Felsenfeld A, Drezner MK, et al. Altered divalent ion metabolism n early renal failure: role of 1,25(OH)2D. Kidney Int. 1985;27:565–73. St. John A, Thomas MB, Davies CP, et al. Determinants of intact parathyroid hormone and free 1,25-dihydroxyvitamin D levels in mild and moderate renal failure. Nephron. 1992;61:422–7. Salusky IB, Goodman WG, Horst R, et al. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32. Fox J. Verapamil induces PTH resistance but increases duodenal calcium absorption in rats. Am J Physiol. 1988;255:E702–7. Avioli LV, Lee SW, McDonald JE, et al. Metabolism of vitamin D3 3H in human subjects—distribution in blood, bile, feces, and urine. J Clin Invest. 1967;46(6):983–92. Gray RW, Weber HP, Dominguez JH, et al. The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans. J Clin Endocrinol Metab. 1974;39:1045–56. Arnaud SB, Goldsmith RS, Lambert PW, et al. 25-Hydroxyvitamin D3: evidence of an enterohepatic circulation in man. Proc Soc Exp Biol Med. 1975;149:570–2. Norman AW, DeLuca HF. The preparation of 3H-vitamin D2 and D3—their localization in the rat. Biochemistry. 1963;2:1160–8. Haddad JG Jr, Boisseau V, Avioli LV. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med. 1971;77(6):908–15. Rojanasathit S, Haddad JG. Hepatic accumulation of vitamin D3 and 25-hydroxyvitamin D3. Biochim Biophys Acta. 1976;421:12–21. Weisman Y, Vargas A, Duckett G, et al. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology. 1978;103(6):1992–6. Weisman Y, Sapir R, Harell A, et al. Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta. 1976;428:388–95. Dueland S, Pedersen JI, Helgerud P, et al. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol. 1983;245:E463–7. Noff D, Edelstein S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res. 1978;9:292–300. Larsson S-E, Lorentzon R. Excretion of active metabolites of vitamin D in urine and bile of the adult rat. Clin Sci Mol Med. 1977;53:373–7. Stumpf WE, O’Brien LP. Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry. 1987;87(1):53–8. Stumpf WE, Hayakawa N. Salivary glands epithelial and myoepithelial cells are major vitamin D targets. Eur J Drug Metab Pharmacokinet. 2007;32(3):123–9. Stumpf WE, Sar M, O’Brien LP. Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry. 1987;88(1):11–6. Frolik CA, DeLuca HF. Stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Cin Invest. 1973;52(3):543–8. Stumpf WE, Sar M, Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90. Stumpf WE, Sar M, Narbaitz R, et al. Cellular and subcellular localization of 1,25-(OH)2 vitamin D3 in rat kidney—comparison with localization of parathyroid-hormone and estradiol. Proc Natl Acad Sci USA. 1980;77(2):1149–53. Stumpf WE, Sar M, Reid FA, et al. Autoradiographic studies with 3H 1,25-(OH)2 vitamin D3 and 3H 25-OH-vitamin D3 in rat parathyroid glands. Cell Tissue Res. 1981;221(2):333–8. Stumpf WE, Sar M, Clark SA, et al. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215(4538):1403–5. Stumpf WE, Narbaitz R, Huang S, et al. Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res. 1983;18:215–20. Sar M, Stumpf WE, DeLuca HF. Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res. 1980;209:161–6. Simpson RU, DeLuca HF. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc Natl Acad Sci USA. 1980;77(10):5822–6. Clark SA, Stumpf WE, Sar M. Target cells for 1,25-dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 1980;209(3):515–20. Clark SA, Dame MC, Kim YS, et al. 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec. 1985;212(3):250–4. Narbaitz R, Stumpf W, Sar M. The role of autoradiographic and immunocytochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem. 1981;29(1):91–100. Rhoten WB, Christakos S. Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology. 1981;109(3):981–3. Gascon-Barré M, Huet PM. Role of the liver in the homeostasis of calciferol metabolism in the dog. Endocrinology. 1982;110(2):563–70. Merke J, Kreusser W, Bier B. Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur J Biochem. 1983;130(2):303–8. Levy FO, Eikvar L, Jutte NHPM. Appearance of the rat testicular receptor for calcitriol (1,25-dihydroxyvitamin D3) during development. J Steroid Biochem. 1985;23(1):51–6. Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406. Narbaitz R, Stumpf WE, Sar M, et al. Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int. 1983;35(2):177–82. Mawer EB, Lumb GA, Stanbury SW. Long biological half-life of vitamin D3 and its polar metabolites in human serum. Nature. 1969;222:482483. Smith JE, Goodman D. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. 1971;50:2159–67. Ponchon G, DeLuca HF. Ethanol-induced artifacts in the metabolism of 3H-vitamin D3. Proc Soc Exp Biol Med. 1969;131:727–31. Brouwer DA, van Beek J, Ferwerda H, et al. Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr. 1998;79(6):527–32. Bec P, Bayard F, Louvet JP. 25-Hydroxycholecalciferol dynamics in human plasma. Rev Eur Etud Clin Biol. 1972;XVII:793–6. Batchelor AJ, Compston JE. Reduced plasma half-life of radio-labeled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br J Nutr. 1983;49:213–6. Davie MW, Lawson DEM, Emberson C. Vitamin D from skin: contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsant-treated subjects. Clin Sci. 1982;63:461–72. Clements MR, Davies M, Hayes ME. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol. 1991;37(1):17–27. Vicchio D, Yergey A, O’Brien K. Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom. 1993;22:53–8. Haddad JG Jr, Rojanasathit S. Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab. 1976;42:284–90. Salusky IB, Goodman WG, Horst R. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32. Vieth R, Kooh SW, Balfe JW. Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats. Kidney Int. 1990;38:857–61. Mawer EB, Backhouse J, Davies M, et al. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet. 1971;1(7971):1203–6. Salusky I, Goodman WG, Horst R, et al. Plasma kinetics of intravenous calcitriol in normal and dialysed subjects and acute effect on serum PTH levels. In: Norman A, Schaefer K, Grigoleti HG, Herrath DV, et al., editors. Vitamin D: molecular, cellular, and clinical endocrinology (proceedings of the seventh workshop on vitamin D). New York: De Gruyter; 1988. p. 781–2. Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol. 1996;7:488–96. Torregrosa JV, Campistol JM, Más M, et al. Usefulness and pharmacokinetics of subcutaneous calcitriol in the treatment of secondary hyperparathyroidism. Nephrol Dial Transplant. 1996;11(3):54–7. Bianchi ML, Ardissino GL, Schmitt CP, et al. No difference in intestinal strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal subjects. J Bone Miner Res. 1999;14:1789–95. Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol Dial Transplant. 2002;17(5):829–42. Fakih MG, Trump D, Muindi JR. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral Gefitinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13(4):1216–23. Frolik CA, DeLuca HF. Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest. 1972;51(11):2900–6. Mason RS, Lissner D, Posen S. Blood concentrations of dihydroxylated vitamin D metabolites after an oral dose. Br Med J. 1980;280:449–50. Ohno J, Kubota M, Hirasawa Y, et al. Clinical evaluation of 1α-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in the treatment of renal osteodystrophy. In: Norman A, Schaefer K, Herrath DV, Grigoleit HG, editors. Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. New York: W. DeGruyter; 1982. p. 847–52. Levine BS, Singer FR, Bryce GF, et al. Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med. 1985;105:239–46. Seino Y, Tanaka H, Yamaoka K, et al. Circulating 1α, 25-dihydroxyvitamin D levels after a single dose of 1α, 25-dihydroxyvitamin D3 or 1α-hydroxyvitamin D3 in normal men. Bone Miner. 1987;2:469–85. Kimura Y, Nakayama M, Kuriyama S, et al. Pharmacokinetics of active vitamin D3, 1α-hydroxyvitamin D3 and 1α, 25-dihydroxyvitamin D3 in patients on chronic hemodialysis. Clin Nephrol. 1991;35(2):72–7. Dechant KL, Goa KL. Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging. 1994;5(4):300–12. Beer TM, Munar M, Henner WD. A phase I trial of pulse calcitriol in patients with refractory malignancies. Pulse dosing permits substantial dose escalation. Cancer. 2001;91(12):2431–9. Muindi JR, Peng Y, Potter DM, et al. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002;72:648–59. Selgas R, Martinez M-E, Miranda B, et al. The pharmacokinetics of a single dose of calcitriol administered subcutaneously in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13:122–5. Smith DC, Johnson CS, Freeman CC, et al. A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res. 1999;5:1339–45.