The Flexible, Extensible and Efficient Toolbox of Level Set Methods

Springer Science and Business Media LLC - Tập 35 Số 2-3 - Trang 300-329 - 2008
Ian M. Mitchell1
1Department of Computer Science, University of British Columbia, Vancouver, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)

Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Set-valued numerical analysis for optimal control and differential games. In: Bardi, M., Raghavan, T.E.S., Parthasarathy, T. (eds.) Stochastic and Differential Games: Theory and Numerical Methods. Annals of International Society of Dynamic Games, vol. 4, pp. 177–247. Birkhäuser, Basel (1999)

Chopp, D.: Computing minimal surfaces via level set curvature flow. J. Comput. Phys. 106, 77–91 (1993)

Chu, K.T., Prodanovic, M.: Level set method library (LSMLIB). [Online]. Available: http://www.princeton.edu/~ktchu/software/lsmlib/

Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

Crandall, M.G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43(167), 1–19 (1984)

Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

[Online]. Available: http://creativecommons.org

Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

J. Sci. Comput. 19 (1–3) (2003)

Kao, C.-Y., Osher, S., Qian, J.: Lax-Friedrichs sweeping schemes for static Hamilton-Jacobi equations. J. Comput. Phys. 196, 367–391 (2004)

Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, 3rd edn. Applications of Mathematics. Springer, New York (1999)

Kurzhanski, A.B., Mitchell, I.M., Varaiya, P.: Control synthesis for state constrained systems and obstacle problems. In: Proceedings of the IFAC Workshop on Nonlinear Control (NOLCOS). Vienna, Austria (2004)

Mallet, V.: Multivac C++ library. [Online]. Available: http://vivienmallet.net/fronts/index.php

[Online]. Available: http://www.cs.ubc.ca/~mitchell/ToolboxLS

Mitchell, I.M.: A toolbox of level set methods (version 1.1). Department of Computer Science, University of British Columbia, Vancouver, BC, Canada, Tech. Rep. TR-2007-11, June 2007. [Online]. Available: http://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS.pdf

Mitchell, I.M., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid systems. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 3414, pp. 480–494. Springer, New York (2005)

Mitchell, I., Tomlin, C.: Level set methods for computation in hybrid systems. In: Krogh, B., Lynch, N. (eds.) Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 1790, pp. 310–323. Springer, New York (2000)

Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

Oberman, A.: A convergent upwind difference scheme for motion of level sets by mean curvature. Numer. Math. 99(2), 365–379 (2004)

Oberman, A.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006)

Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, New York (2003)

Osher, S.: A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations. SIAM J. Math. Anal. 24(5), 1145–1152 (1993)

Osher, S., Fedkiw, R.: Level set methods: an overview and some recent results. J. Comput. Phys. 169, 463–502 (2001)

Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, New York (2003)

Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)

Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE based fast local level set method. J. Comput. Phys. 165, 410–438 (1999)

Peyré, G.: Toolbox fast marching. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6110

Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163, 51–67 (2000)

Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, New York (1999)

Sethian, J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169, 503–555 (2001)

Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

Smereka, P.: Spiral crystal growth. Physica D 138, 282–301 (2000)

Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)

Sumengen, B.: A Matlab toolbox implementing level set methods. [Online]. Available: http://barissumengen.com/level_set_methods/index.html

Sussman, M., Smereka, P., Osher, S.: An improved level set method for incompressible two-phase flow. J. Comput. Phys. 114, 145–159 (1994)

Takei, R.: Modern theory of numerical methods for motion by mean curvature. Master’s thesis, Department of Mathematics, Simon Fraser University (August 2007)

Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)