The Effects of Wheat Bran Composition on the Production of Biomass-Hydrolyzing Enzymes by Penicillium decumbens
Tóm tắt
The effects of the starch, protein, and soluble oligosaccharides contents in wheat bran on the extracellular biomass-hydrolyzing enzymes activities released by Penicillium decumbens mycelia grown in batch fermentations have been examined. The results showed increased starch content correlated directly with an increase in released amylase activity but inversely with the levels of secreted cellulase and xylanase. High amounts of protein in wheat bran also reduced the activities of cellulase, xylanase and protease in the culture medium. The effects of the soluble and insoluble components of wheat bran and cello-oligosaccharides supplements on production of extracellular cellulase and xylanase were compared. The soluble cello-oligosaccharides compositions in wheat bran were proved to be one of the most significant factors for cellulase production. According to the results of this research, determining and regulating the composition of wheat bran used as a fermentation supplement may allow for improved induction of cellulase and xylanase production.
Tài liệu tham khảo
Brown, J. A., Collin, S. A., & Wood, T. M. (1987). Enzyme and Microbial Technology, 9, 176–180.
Jørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson L. (2005). Enzyme and Microbial Technology, 36, 42–48.
Qu, Y. B., Gao, P. J., & Wang, Z. N. (1984). Acta Mycologica Sinica (Chinese), 3, 238–243.
Qu, Y. B., Zhao, X., Gao, P. J., & Wang, Z. N. (1991). Applied Biochemistry and Biotechnology, 28/29, 363–368.
Mo, H., Zhang, X., & Li, Z. (2004). Process Biochemistry, 39, 1293–1297.
Qu, Y. B., Gao, P. J., & Wang, Z. N. (1987). Journal of Shandong University (Chinese), 22, 97–103.
Carre, B., & Brillouet, J. M. (1986). Journal of the Science of Food and Agriculture, 37, 341–351.
Ralet, M. C., Thibault, J. F., & Della-Valle, G. (1990). Journal of Cereal Science, 11, 793–812.
Wayman, M., & Chen, S. (1992). Enzyme Microbiology Technology, 14, 825–831.
Maes, C., & Delcour, J. A. (2002). Journal of Cereal Science, 35, 315–326.
Xu, H., Qian, W., Zhu, M. T., Cai, C. P., & Gao, P. J. (1997). Food and Fermentation Industries (Chinese), 23, 15–17.
Palmarola-Adrados, B., Chotěborská, P., Galbe, M., & Zacchi, G. (2005). Bioresource Technology, 96, 843–850.
Maeda, H., Sano, M., Maruyama, Y., Tanno, T., Akao, T., Totsuka, Y., et al. (2004). Applied Microbiology and Biotechnology, 65, 74–83.
Hrmova, M., Petrakova, E., & Biely, P. (1991). Journal of General Microbiology, 137, 541–547.
Schmoll, M., & Kubicek, C. P. (2003). Acta Microbiologica et Immunologica Hungarica, 50, 125–145.
Suto, M., & Tomita, F. (2001). Journal of Bioscience and Bioengineering, 92, 305–311.
Kurasawa, T., Yachi, M., Suto, M., Kamagata, Y., Takao, S., & Tomita, F. (1992). Applied and Environmental Microbiology, 58, l06–110.
Kubicek, C. P. (1987). Journal of General Microbiology, 133, 1481–1487.
Claeyssens, M., van Tilbeurgh, H., Kramerling, J. P., Berg, J., Vrsanska, M., & Biely, P. (1990). Biochemical Journal, 270, 251–256.
Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.
Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.
Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112.
Chahal, D. S. (1985). Applied and Environmental Microbiology, 49, 205–210.
Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.
Lin, J. Q., Lee, S. M., & Koo, Y. M. (2000). Biotechnology and Bioprocess Engineering, 5, 382–385.
Holm, J., Bjorck, I., Drews, A., & Asp, N. G. (1986). Starch/Starke, 38, 224–226.
Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.
Krogh, K. B., Morkeberg, A., Jorgensen, H., Frisvad, J. C., & Olsson, L. (2004). Applied Biochemistry and Biotechnology, 113, 389–401.
Carle-Urioste, J. C., Escobar-Vera, J., El-Gogary, S., Henrique-Silva, F., Torigoi, E., Crivellaro, O., et al. (1997). Journal of Biological Chemistry, 272, 10169–10174.