Tác động của việc cation hóa bằng kim loại lanthanide ba hóa trị lên quá trình phân hủy điện tử chuyển giao của fibrinopeptide B axit và các đồng phân của nó

American Chemical Society (ACS) - Tập 27 - Trang 1499-1509 - 2016
Juliette J. Commodore1, Carolyn J. Cassady1
1Department of Chemistry, The University of Alabama, Tuscaloosa, USA

Tóm tắt

Ion hóa bằng điện phun (ESI) trên hỗn hợp fibrinopeptide B axit và hai đồng phân peptide với muối lanthanide ba hóa trị sinh ra các ion [M + Met + H]4+, [M + Met]3+, và [M + Met –H]2+, với M = peptide và Met = kim loại (trừ promethium phóng xạ). Các ion này trải qua phân hủy rất rộng rãi và hiệu quả cao thông qua quá trình phân hủy điện tử chuyển giao (ETD) để hình thành các ion c- và z- có kim loại và không có kim loại. Tất cả các ion sản phẩm được tạo thành từ sự gắn kết với kim loại đều chứa ít nhất hai vị trí axit, điều này cho thấy sự gắn kết của cation lanthanide tại các chuỗi bên của một hoặc nhiều dư lượng axit. Ba peptide đều trải qua quá trình phân hủy tương tự. ETD trên [M + Met + H]4+ dẫn đến sự phân tách tại mỗi dư lượng; sự hiện diện của cả ion kim loại và một proton thừa rất hiệu quả trong việc thúc đẩy quá trình phân hủy chứa thông tin chuỗi. Phân hủy xương sống của [M + Met]3+ cũng rất rộng rãi, mặc dù không phải lúc nào sự phân tách cũng xảy ra giữa các dư lượng axit glutamic liền kề. Đối với [M + Met – H]2+, một phạm vi ion sản phẩm hạn chế hơn được hình thành. Tất cả các phức hợp peptide kim loại lanthanide đều hiển thị quá trình phân hủy tương tự ngoại trừ europium (Eu). ETD trên [M + Eu – H]2+ và [M + Eu]3+ tạo ra một lượng hạn chế về sự phân tách xương sống peptide; tuy nhiên, [M + Eu + H]4+ phân hủy rất rộng rãi với sự phân tách tại mỗi dư lượng. Ngoại trừ kết quả cho Eu(III), sự hình thành ion peptide có kim loại qua ESI, hiệu quả phân hủy ETD và sự hình thành ion sản phẩm không bị ảnh hưởng bởi bản chất của cation lanthanide. Việc gắn kết với các ion kim loại lanthanide ba hóa trị là một công cụ đầy hứa hẹn cho việc phân tích chuỗi của các peptide axit thông qua ETD.

Từ khóa

#Ion hóa điện phun #phân hủy điện tử chuyển giao #peptide #lanthanide #chuyển giao electron.

Tài liệu tham khảo

Ebert, R.F., Bell, W.R.: Assay of human fibrinopeptides by high-performance liquid chromatography. Anal. Biochem. 148, 70–78 (1985) Edkins, J.S.: The chemical mechanism of gastric secretion 1. J. Physiol. Lond. 34, 133–144 (1906) Dimaline, R., Lee, C.M.: Chicken gastrin—a member of the gastrin cck family with novel structure–-activity relationships. Am. J. Physiol. 259, G882–G888 (1990) Pierotti, A.R., Prat, A., Chesneau, V., Gaudoux, F., Leseney, A.M., Foulon, T., Cohen, P.: N-arginine dibasic convertase, a metalloendopeptidase as a prototype of a class of processing enzymes. Proc. Natl. Acad. Sci. U. S. A. 91, 6078–6082 (1994) Speetjens, J.K., Parand, A., Crowder, M.W., Vincent, J.B., Woski, S.A.: Low-molecular weight chromium-binding substance and biomimetic [Cr3O(O2CH2CH3)6(H2O)3]+ do not cleave DNA under physiologically-relevant conditions. Polyhedron 18, 2617–2624 (1999) Vincent, J.B.: Elucidating a biological role for chromium at a molecular level. Acc. Chem. Res. 33, 503–510 (2000) Davis, C.M., Vincent, J.B.: Isolation and characterization of a biologically active chromium oligopeptide from bovine liver. Arch. Biochem. Biophys. 339, 335–343 (1997) Lapko, V.N., Jiang, X.Y., Smith, D.L., Song, P.S.: Post-translational modification of oat phytochrome A: phosphorylation of a specific serine in a multiple serine cluster. Biochemistry 36, 10595–10599 (1997) Yagami, T., Kitagawa, K., Futaki, S.: Liquid secondary-ion mass spectrometry of peptides containing multiple tyrosine-O-sulfates. Rapid Commun. Mass Spectrom. 9, 1335–1341 (1995) Chen, Y., Watson, H.M., Gao, J., Sinha, S.H., Cassady, C.J., Vincent, J.B.: Characterization of the organic component of low-molecular-weight chromium-binding substance and its binding of chromium. J. Nutr. 141, 1225–1232 (2011) Jai-nhuknan, J., Cassady, C.J.: Negative ion postsource decay time-of-flight mass spectrometry of peptides containing acidic amino acid residues. Anal. Chem. 70, 5122–5128 (1998) Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998) Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 72, 563–573 (2000) Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 121, 2857–2862 (1999) Chen, X., Tureček, F.: The arginine anomaly: arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations. J. Am. Chem. Soc. 128, 12520–12530 (2006) Zubarev, R.A., Haselmann, K.F., Budnik, B., Kjeldsen, F., Jensen, F.: Towards an understanding of the mechanism of electron-capture dissociation: a historical perspective and modern ideas. Eur. J. Mass Spectrom. 8, 337–349 (2002) Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004) Syrstad, E.A., Tureček, F.: Toward a general mechanism of electron capture dissociation. J. Am. Soc. Mass Spectrom. 16, 208–224 (2005) McLafferty, F.W., Horn, D.M., Breuker, K., Ge, Y., Lewis, M.A., Cerda, B.A., Zubarev, R.A., Carpenter, B.K.: Electron capture dissociation of gaseous multiply charged ions by Fourier transform ion cyclotron resonance. J. Am. Soc. Mass Spectrom. 12, 245–249 (2001) Cooper, H.J., Håkansson, K., Marshall, A.G.: The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 24, 201–222 (2005) Leymarie, N., Costello, C.E., O'Connor, P.B.: Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 125, 894–8958 (2003) Mirgorodskaya, E., Roepstorff, P., Zubarev, R.A.: Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal. Chem. 71, 4431–4436 (1999) Shi, S.D.H., Hemling, M.E., Carr, S.A., Horn, D.M., Lindh, I., McLafferty, F.W.: Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal. Chem. 73, 19–22 (2001) Kelleher, N.L., Zubarev, R.A., Bush, K., Furie, B., Furie, B.C., McLafferty, F.W., Walsh, W.T.: Localization of labile posttranslational modifications by electron capture dissociation: the case of γ-carboxyglutamic acid. Anal. Chem. 71, 4250–4253 (1999) Mann, M., Jensen, O.N.: Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003) Stensballe, A., Jensen, O.N., Olsen, J.V., Haselmann, K.F., Zubarev, R.A.: Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 14, 1793–2000 (2000) Zhao, C., Sethuraman, M., Clavreul, N., Kaur, P., Cohen, R.A., O’Connor, P.B.: Detailed map of oxidative post-translational modifications of human P21Ras using Fourier transform mass spectrometry. Anal. Chem. 78, 5134–5142 (2006) Zubarev, R.A.: Electron capture dissociation LC/MS/MS for bottom-up proteomics. Methods Mol. Biol. 492, 413–416 (2009) Coon, J.J.: Collisions or electrons? Protein sequence analysis in the 21st century. Anal. Chem. 81, 3208–3215 (2009) Good, D.M., Wirtala, M., McAlister, G.C., Coon, J.J.: Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteom. 6, 1942–1951 (2007) Tureček, F., Julian, R.R.: Peptide radicals and cation radicals in the gas phase. Chem. Rev. 113, 6691–6733 (2013) Dongre, A.R., Jones, J.L., Somogyi, A., Wysocki, V.H.: Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J. Am. Chem. Soc. 118, 8365–8374 (1996) Kjeldsen, F., Giessing, A.M.B., Ingrell, C.R., Jensen, O.N.: Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry. Anal. Chem. 79, 9243–9252 (2007) Wells, J.M., Stephenson Jr., J.L., McLuckey, S.A.: Charge dependence of protonated insulin decompositions. Int. J. Mass Spectrom. 203, A1–A9 (2000) Madsen, J.A., Brodbelt, J.S.: Comparison of infrared multiphoton dissociation and collision-induced dissociation of supercharged peptides in ion traps. J. Am. Soc. Mass Spectrom. 20, 349–358 (2009) Chalkley, R.J., Medzihradszky, K.F., Lynn, A.J., Baker, P.R., Burlingame, A.L.: Statistical analysis of peptide electron transfer dissociation fragmentation mass spectrometry. Anal. Chem. 82, 579–584 (2010) Sharma, V., Eng, J.K., Feldman, S., von Haller, P.D., MacCoss, M.J., Noble, W.S.: Precursor charge state prediction for electron transfer dissociation tandem mass spectra. J. Proteome Res. 9, 5438–5444 (2010) Liu, H., Håkansson, K.: Divalent metal ion–peptide interactions probed by electron capture dissociation of trications. J. Am. Soc. Mass Spectrom. 17, 1731–1741 (2006) Liu, H., Håkansson, K.: Electron capture dissociation of tyrosine O-sulfated peptides complexed with divalent metal cations. Anal. Chem. 78, 7570–7576 (2006) Fung, Y.M.E., Liu, H., Chan, T.W.D.: Electron capture dissociation of peptides metalated with alkaline-earth metal ions. J. Am. Soc. Mass Spectrom. 17, 757–771 (2006) Chen, X., Chan, W.Y.K., Wong, P.S., Yeung, H.S., Chan, T.W.D.: Formation of peptide radical cations (M+·) in electron capture dissociation of peptides adducted with group IIB metal ions. J. Am. Soc. Mass Spectrom. 22, 233–244 (2011) Chen, X., Fung, Y.M.E., Chan, W.Y.K., Wong, P.S., Yeung, H.S., Chan, T.W.D.: Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides. J. Am. Soc. Mass Spectrom. 22, 2232–2245 (2011) Chen, X., Wang, Z., Li, W., Wong, Y.L.E., Chan, T.W.D.: Effect of structural parameters on the electron capture dissociation and collision-induced dissociation pathways of copper(II)-peptide complexes. Eur. J. Mass Spectrom. 21, 649–657 (2015) Chen, X., Liu, G., Wong, E.Y.L., Deng, L., Wang, Z., Li, W., Chan, T.W.D.: Dissociation of trivalent metal ion (Al3+, Ga3+, In3+ and Rh3+)–peptide complexes under electron capture dissociation conditions. Rapid Commun. Mass Spectrom. 30, 705–710 (2016) Voinov, V.G., Hoffman, P.D., Bennett, S.E., Beckman, J.S., Barofsky, D.F.: Electron capture dissociation of sodium-adducted peptides on a modified quadrupole/time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 26, 2096–2104 (2015) Kleinnijenhuis, A.J., Mihalca, R., Heeren, R.M.A., Heck, A.J.R.: Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin. Int. J. Mass Spectrom. 253, 217–224 (2006) van der Burgt, Y.E.M., Palmblad, M., Dalebout, H., Heeren, R.M.A., Deelder, A.M.: Electron capture dissociation of peptide hormone changes upon opening of the tocin ring and complexation with transition metal cations. Rapid Commun. Mass Spectrom. 23, 31–38 (2009) Iavarone, A.T., Paech, K., Williams, E.R.: Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Anal. Chem. 76, 2231–2238 (2004) Flick, T., Donald, W., Williams, E.: Electron capture dissociation of trivalent metal ion-peptide complexes. J. Am. Soc. Mass Spectrom. 24, 193–201 (2013) Dong, J., Vachet, R.W.: Coordination sphere tuning of the electron transfer dissociation behavior of Cu(II)-peptide complexes. J. Am. Soc. Mass Spectrom. 23, 321–329 (2012) Asakawa, D., Takeuchi, T., Yamashita, A., Wada, Y.: Influence of metal–peptide complexation on fragmentation and inter-fragment hydrogen migration in electron transfer dissociation. J. Am. Soc. Mass Spectrom. 25, 1029–1039 (2014) Asakawa, D., Wada, Y.: Electron transfer dissociation mass spectrometry of peptides containing free cysteine using group XII metals as a charge carrier. J. Phys. Chem. B 118, 12318–12325 (2014) Prell, J.S., Flick, T.G., Oomens, J., Berden, G., Williams, E.R.: Coordination of trivalent metal cations to peptides: results from IRMPD spectroscopy and theory. J. Phys. Chem. A 114, 854–860 (2009) Shi, T., Hopkinson, A.C., Siu, K.W.M.: Coordination of triply charged lanthanum in the gas phase: theory and experiment. Chem. Eur. J. 13, 1142–1151 (2007) Shi, T., Siu, K.W.M., Hopkinson, A.C.: Generation of [La(peptide)]3+ complexes in the gas phase: determination of the number of binding sites provided by dipeptide, tripeptide, and tetrapeptide ligands. J. Phys. Chem. A 111, 11562–11571 (2007) Shvartsburg, A.A., Jones, R.C.: Attachment of metal trications to peptides. J. Am. Soc. Mass Spectrom. 15, 406–408 (2004) Feng, C., Commodore, J.J., Cassady, C.J.: The use of chromium(III) to supercharge peptides by protonation at low basicity sites. J. Am. Soc. Mass Spectrom. 26, 347–358 (2015) Hunter, E.P., Lias, S.G.: Proton affinity evaluation. In: Linstrom, P. J., Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology: Gaithersburg MD, 20899, retrieved February 5, (2016) Roepstorff, P., Fohlman, J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984) Biemann, K.: Contributions of mass-spectrometry to peptide and protein-structure. Biomed. Environ. Mass Spectrom. 16, 99–111 (1988) Chung, T.W., Hui, R., Ledvina, A., Coon, J.J., Tureček, F.: Cascade dissociations of peptide cation-radicals. Part 1. Scope and effects of amino acid residues in penta-, nona-, and decapeptides. J. Am. Soc. Mass Spectrom. 23, 1336–1350 (2012) Han, H., Xia, Y., McLuckey, S.A.: Ion trap collisional activation of c and z• ions formed via gas-phase ion/ion electron-transfer dissociation. J. Proteome Res. 6, 3062–3069 (2007) Fung, Y.M.E., Chan, T.W.D.: Experimental and theoretical investigations of the loss of amino acid side chains in electron capture dissociation of model peptides. J. Am. Soc. Mass Spectrom. 16, 1523–1535 (2005) Xia, Q., Lee, M., Rose, C., Marsh, A., Hubler, S., Wenger, C., Coon, J.: Characterization and diagnostic value of amino acid side chain neutral losses following electron-transfer dissociation. J. Am. Soc. Mass Spectrom. 22, 255–264 (2011) Cotton, S.: Lanthanide and actinide chemistry, pp. 10–15. John Wiley and Sons, Ltd., West Sussex, England (2006) Frese, C.K., Altelaar, A.F.M., Hennrich, M.L., Nolting, D., Zeller, M., Griep-Raming, J., Heck, A.J.R., Mohammed, S.: Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-orbitrap velos. J. Proteome Res. 10, 2377–2388 (2011) Pu, D., Vincent, J.B., Cassady, C.J.: The effects of chromium(III) coordination on the dissociation of acidic peptides. J. Mass Spectrom. 43, 773–781 (2008) Watson, H.M., Vincent, J.B., Cassady, C.J.: Effects of transition metal ion coordination on the collision-induced dissociation of polyalanines. J. Mass Spectrom. 46, 1099–1107 (2011) Davis, C.M., Vincent, J.B.: Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 36, 4382–4385 (1997) Sun, Y., Ramirez, J., Woski, S.A., Vincent, J.B.: The binding of trivalent chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transferrin and Cr(pic)3 to LMWCr. J. Biol. Inorg. Chem. 5, 129–136 (2000) Kramida, A., Ralchenko, Y., Reader, J.: Atomic Spectra Database. In: NIST ASD Team (ed.) NIST Atomic Spectra Database (ver. 5.2), National Institute of Standards and Technology: Gaithersburg MD, 20899, retrieved May 17 (2016) Lide, D.R. (ed.) CRC Handbook of Chemistry and Physics, 73rd ed.; CRC Press: Cleveland, OH (1992–1993) Lavanant, H., Virelizier, H., Hoppilliard, Y.: Reduction of copper(II) complexes by electron capture in an electrospray ionization source. J. Am. Soc. Mass Spectrom. 9, 1217–1221 (1998) Amorello, D., Romano, V., Zingales, R.: The formal redox potential of the Yb(III, II) couple at 0 °C in 3.22 molal NaCl medium. Ann. Chim. 94, 113–121 (2004) Walters, G.C., Pearce, D.: The potential of the Yb+++ -Yb++ electrode. J. Am. Chem. Soc. 62, 3330–3332 (1940) Laitinen, H., Taebel, W.: Europium and ytterbium in rare earth mixtures: polarographic determination. Ind. Eng. Chem. Anal. Ed. 13, 825–829 (1941) Tsybin, Y.O., Håkansson, P., Budnik, B.A., Haselmann, K.F., Kjeldsen, F., Gorschkov, M., Zubarev, R.A.: Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 15, 1849–1854 (2001) Kaplan, D., Brekenfeld, A., Hartmer, R., Ledertheil, T., Gebhardt, C., Schubert, M.: Technical Note #24 Extending the Capacity in Modern Spherical High Capacity Ion Traps (HCT). In Bruker Daltonics Technical Notes: Bruker Daltonics. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/Separations_MassSpectrometry/Literature/literature/TechNotes/TN-24-HCT-ebook.pdf (2016). Retrieved 19 Feb 2016 Suckau, D., Shi, Y., Beu, S.C., Senko, M.W., Quinn, J.P., Wampler, F.M., McLafferty, F.W.: Coexisting stable conformations of gaseous protein ions. Proc. Natl. Acad. Sci. U. S. A. 90, 790–793 (1993) Loo, J.A., Edmonds, C.G., Udseth, H.R., Smith, R.D.: Effect of reducing disulfide-containing proteins on electrospray ionization mass spectra. Anal. Chem. 62, 693–698 (1990) Chowdhury, S.K., Katta, V., Chait, B.T.: Probing conformation changes in proteins by mass spectrometry. J. Am. Chem. Soc. 112, 9012–9013 (1990) Guevremont, R., Siu, K.W.M., Le Blanc, J.C.Y., Berman, S.S.: Are the electrospray mass spectra of proteins related to their aqueous solution chemistry? J. Am. Soc. Mass Spectrom. 3, 216–224 (1992) Zhurov, K.O., Fornelli, L., Wodrich, M.D., Laskay, U.A., Tsybin, Y.O.: Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 42, 5014–5030 (2013) Savitski, M.M., Kjeldsen, F., Nielsen, M.L., Zubarev, R.A.: Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides. J. Am. Soc. Mass Spectrom. 18, 113–120 (2007) Oh, H., Breuker, K., Sze, S.K., Ge, Y., Carpenter, B.K., McLafferty, F.W.: Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 99, 15863–15868 (2002) Lee, S.W., Kim, H.S., Beauchamp, J.L.: Salt bridge chemistry applied to gas-phase peptide sequencing: selective fragmentation of sodiated gas-phase peptide ions adjacent to aspartic acid residues. J. Am. Chem. Soc. 120, 3188–3195 (1998)