The Effect of Shear Rate on the Molecular Mass Distribution of Heat-Induced Aggregates of Mixtures Containing Whey Proteins and κ-Carrageenan

Food Biophysics - Tập 4 - Trang 13-22 - 2008
Samy Gaaloul1, Milena Corredig2, Sylvie L. Turgeon1
1Dairy Research Centre STELA, Faculté des Sciences de l’agriculture et de l’alimentation, Pavillon Paul Comtois, Université Laval, Sainte-Foy, Canada
2Department of Food Science, University of Guelph, Guelph, Canada

Tóm tắt

The present study attempts to characterize the effect of shear rate on the composition, size, and molecular weight of the protein aggregates present in the upper layer after phase separation of 5% whey protein isolate (WPI) mixed with 0.5% κ-carrageenan (κ-car) at pH 7.0. The mixtures were heated and sheared under different shearing rates. Size exclusion chromatography (SEC), dynamic light scattering, and static light scattering were employed to describe the effect of shear rate on the size and molecular mass of WPI aggregates. At the molecular level, the size of the aggregates increased with an increase in shear rate. Shear rate also caused a decrease in turbidity of the upper layer after centrifugation. SEC combined with multi-angle laser light scattering showed that the WPI aggregates molecular mass was between 106and 107 g/mol when the shear rate increased from 3.6 to 86.4 s−1. Two empirical models described well the effect of shear rate on the size of WPI aggregates, and both models gave comparable results. By varying process parameters such as flow behavior and temperature, it is possible to control WPI aggregation and, thus, obtain aggregates with a range of different characteristics (size).

Tài liệu tham khảo

M.J. Kronman, G.L. Holmes, F.M. Robbins, Biochim. Biophys. Acta 133, 46 (1967) S. Mleko, E.C.Y. Li-Chan, S. Pikus, Food Res. Int. 30, 427 (1998). doi:10.1016/S0963-9969(97)00071-9 X.J. Leng, S.L. Turgeon, Food Hydrocoll. 21, 1014 (2007). doi:10.1016/j.foodhyd.2006.03.013 S.L. Turgeon, M. Beaulieu, Food Hydrocoll. 15, 583 (2001). doi:10.1016/S0268-005X(01)00064-9 M.A. de la Fuente, Y. Hemar, H. Singh, Food Chem. 86, 1 (2004). doi:10.1016/j.foodchem.2003.08.008 D.M. Mulvihill, J.E. Kinsella, Food Technol. 41, 102–111 (1987) A. Syrbe, W.J. Bauer, H. Klostermeyer, Int. Dairy J. 8, 179 (1998). doi:10.1016/S0958-6946(98)00041-7 S. Bourriot, C. Garnier, J.-L. Doublier, Int. Dairy J. 9, 353 (1999). doi:10.1016/S0958-6946(99)00087-4 E. Dickinson, K. Pawlowsky, Food Hydrocoll. 12, 417 (1998). doi:10.1016/S0268-005X(98)00055-1 M.M. Ould Eleya, S.L. Turgeon, Food Hydrocoll. 14, 29 (2000). doi:10.1016/S0268-005X(99)00043-0 C. Schorsch, M.G. Jones, I.T. Norton, Food Hydrocoll. 13, 89 (1999). doi:10.1016/S0268-005X(98)00074-5 V. Tolstoguzov, Biotechnol. Adv. 24, 626 (2006). doi:10.1016/j.biotechadv.2006.07.001 S. Caserta, L. Sabetta, M. Simeone et al., Chem. Eng. Sci. 60, 1019 (2005). doi:10.1016/j.ces.2004.09.076 C.R.T. Brown, T.J. Foster, I.T. Norton et al. in Biopolymer mixtures, ed. by S.E. Harding, S.E. Hill, J.R. Mitchell, (Nottingham University Press, Nottingham, 1995), pp. 32–47 M.M. Ould Eleya, X.J. Leng, S.L. Turgeon, Food Hydrocoll. 20, 946 (2006). doi:10.1016/j.foodhyd.2005.08.003 P. Van Puyvelde, Y.A. Antonov, P. Moldenaers, Food Hydrocoll. 17, 327 (2003). doi:10.1016/S0268-005X(02)00094-2 P. Walkenstrom, A.-M. Hermansson, Food Hydrocoll. 12, 77 (1998). doi:10.1016/S0268-005X(98)00048-4 P. Walkenstrom, N. Panighetti, E. Windhab et al., Food Hydrocoll. 12, 469 (1998). doi:10.1016/S0268-005X(98)00065-4 P. Walkenstrom, M. Nielsen, E. Windhab et al., J. Food Eng. 42, 15 (1999). doi:10.1016/S0260-8774(99)00098-9 A.J. Steventon, A.M. Donald et al., Royal Society of Chemistry, Special Publication, 150, 133 (1994) A. Mora-Gutierrez, T.F. Kumosinski, H.M. Farrell, J. Agric. Food Chem. 46, 4987 (1998). doi:10.1021/jf980387d T.H.M. Snoeren, T.A.J. Payens, Milchwissenschaft 30, 393 (1975) P.A. Spagnuolo, D.G. Dalgleish, H.D. Goff et al., Food Hydrocoll. 19, 371 (2005). doi:10.1016/j.foodhyd.2004.10.003 I. Capron, T. Nicolai, C. Smith, Carbohydr. Polym. 40, 233 (1999). doi:10.1016/S0144-8617(99)00058-2 P. Croguennoc, T. Nicolai, D. Durand et al., Langmuir 17, 4380 (2001). doi:10.1021/la001675i D.V. Zasypkin, E.E. Braudo, V.B. Tolsoguzov, Food Hydrocoll. 11, 145 (1997) P. Van Puyvelde, Y.A. Antonov, P. Moldenaers, Korea–Australia Rheology J. 14, 115 (2002) M.F. Butler, Biomacromolecules 3, 1208 (2002). doi:10.1021/bm0255645 P.J. Wyatt, Anal. Chim. Acta 272, 1 (1993). doi:10.1016/0003-2670(93)80373-S T. Wang, J.A. Lucey, J. Dairy Sci. 86, 3090 (2003) M. Beaulieu, M. Corredig, S.L. Turgeon et al., Food Hydrocoll. 19, 803 (2005). doi:10.1016/j.foodhyd.2004.10.025 M.A.M. Hoffmann, G. Sala, C. Olieman et al., J. Agric. Food Chem. 45, 2949 (1997). doi:10.1021/jf9700788 E.P. Schokker, H. Singh, L.K. Creamer, Int. Dairy J. 10, 843 (2000). doi:10.1016/S0958-6946(01)00022-X M.A. de la Fuente, Y. Hemar, M. Tamehana et al., Int. Dairy J. 12, 361 (2002). doi:10.1016/S0958-6946(02)00031-6 S. Gaaloul, S.L. Turgeon, M. Corredig, Food Hydrocoll. (2008) (in press) M. Dubois, K.A. Gilles, J.K. Hamilton et al., Anal. Chem. 28, 350 (1956). doi:10.1021/ac60111a017 C. Jackson, L.M. Nilsson, P.J. Wyatt, J. Appl. Polym. Sci. App. Polym Symp. 99, 99 (1989) J. Wen, T. Arakawa, J.S. Philo, Anal. Biochem. 240, 155 (1996). doi:10.1006/abio.1996.0345 E. Dickinson, D.J. McClements, Advances in Food Colloids, (Blackie Academic & Professional, London, 1995), pp. 81–101 P. Aymard, D. Durand, T. Nicolai, Int. J. Biol. Macromol. 19, 213 (1996). doi:10.1016/0141-8130(96)01130-0 P. Havea, A.J. Carr, L.K. Creamer, J. Dairy Res. 71, 330 (2003). doi:10.1017/S002202990400024X T. Qingnong, P.A. Munro, O.J. McCarthy, Proceedings of the 18th Australian Chemical Engineering Conference, 1990, pp. 666–674 T. Spiegel, M. Huss, H.G. Kessler, Dtsch. Milchwirtsch. 5, 152 (1997) A.J. Steventon, A.M. Donald, L.F. Gladden, Biochem. Milk Prod. 150, 133 (1994)