The Effect of Excipients on the Molecular Mobility of Lyophilized Formulations, as Measured by Glass Transition Temperature and NMR Relaxation-Based Critical Mobility Temperature

Pharmaceutical Research - Tập 16 Số 1 - Trang 135-140 - 1999
Yoshioka, Sumie1, Aso, Yukio1, Kojima, Shigeo1
1National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan

Tóm tắt

Purpose. The dependence of the molecular mobility of lyophilized formulations on pharmaceutical polymer excipients was studied. Molecular mobility as determined by NMR relaxation-based critical temperature of molecular mobility (Tmc) and glass transition temperature (Tg) is discussed in relation to the plasticizing effect of water in formulations. Methods. The Tmc and Tg of lyophilized γ-globulin formulations containing 6 different polymer excipients such as dextran, polyvinylpyrrolidone (PVP) and methylcellulose (MC) was determined by NMR and DSC. The molecular mobility of water in the formulations was determined by proton NMR and dielectric relaxation spectrometry (DRS). Results. Tmc varied with polymer excipients. Tmc increased as the ratio of bound water to mobile water increased and as the molecular mobility of mobile water decreased. The formulation containing MC exhibited a lower Tmc than the formulation containing dextran because of the smaller ratio of bound water and the higher molecular mobility of mobile water. The Tmc of the formulation containing PVP was higher than that expected from the higher T2 values of water because of the lower molecular mobility of mobile water regardless of the higher ratio of mobile water. The Tmc of these lyophilized formulations was higher than their Tg by 23°C to 34°C, indicating that the formulations became a NMR-detected microscopically liquidized state below their Tg. Conclusions. The quantity and the molecular mobility of mobile water in lyophilized formulations can be considered to affect the Tmc of lyophilized formulations, which in turn governs their stability.

Từ khóa


Tài liệu tham khảo

citation_journal_title=J. Pharm. Sci.; citation_title=Characteristics and significance of the amorphous state in pharmaceutical systems; citation_author=B. C. Hancock, G. Zografi; citation_volume=86; citation_publication_date=1997; citation_pages=1-12; citation_id=CR1

citation_journal_title=J. Pharm. Sci.; citation_title=How does residual water affect the soid-state degradation of drugs in amorphous state; citation_author=E. Y. Shalaev, G. Zografi; citation_volume=85; citation_publication_date=1996; citation_pages=1137-1140; citation_id=CR2

citation_journal_title=J. Pharm. Sci.; citation_title=Crystallization of indomethacin from the amorphous state below and above its glass transition temperature; citation_author=M. Yoshioka, B. C. Hancock, G. Zografi; citation_volume=83; citation_publication_date=1994; citation_pages=1700-1705; citation_id=CR3

citation_journal_title=J. Pharm. Sci.; citation_title=Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates; citation_author=M. Yoshioka, B. C. Hancock, G. Zografi; citation_volume=84; citation_publication_date=1995; citation_pages=983-986; citation_id=CR4

citation_journal_title=Pharm. Res.; citation_title=Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures; citation_author=B. C. Hancock, S. L. Shamblin, G. Zografi; citation_volume=12; citation_publication_date=1995; citation_pages=799-806; citation_id=CR5

citation_journal_title=Pharm. Res.; citation_title=Molecular mobility of supercooled amorphus indomethacin, determined by dynamic mechanical analysis; citation_author=V. Andronis, G. Zografi; citation_volume=14; citation_publication_date=1997; citation_pages=410-414; citation_id=CR6

citation_journal_title=Develop. Biol. Standard; citation_title=Formulation and stability of freeze-dried proteins: Effects of moisture and oxygen on the stability of freeze-dried formulations of human growth hormone; citation_author=M. J. Pikal, K. Dellerman, M. L. Roy; citation_volume=74; citation_publication_date=1991; citation_pages=21-38; citation_id=CR7

citation_journal_title=Develop. Biol. Standard.; citation_title=The effects of formulation and moisture on the stability of a freeze-dried monoclonal antibody-vinca conjugate: A test of the WLF glass transition theory; citation_author=M. L. Roy, M. J. Pikal, E. C. Rickard, A. M. Maloney; citation_volume=74; citation_publication_date=1991; citation_pages=323-340; citation_id=CR8

citation_journal_title=Pharm. Res.; citation_title=Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody; citation_author=S. P. Duddu, P. R. Dal Monte; citation_volume=14; citation_publication_date=1997; citation_pages=591-595; citation_id=CR9

citation_journal_title=Pharm. Res.; citation_title=The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody; citation_author=S. P. Duddu, G. Zhang, P. R. Dal Monte; citation_volume=14; citation_publication_date=1997; citation_pages=596-600; citation_id=CR10

citation_journal_title=J. Pharm. Sci.; citation_title=Softening temperature of lyophilized bovine serum albumin and g-globulin as measured by spin-spin relaxation time of protein protons; citation_author=S. Yoshioka, Y. Aso, S. Kojima; citation_volume=86; citation_publication_date=1997; citation_pages=470-474; citation_id=CR11

citation_journal_title=Pharm. Res.; citation_title=Dependence of the molecular mobility and protein stability of freeze-dried g-globulin formulations on the molecular weight of detran; citation_author=S. Yoshioka, Y. Aso, S. Kojima; citation_volume=14; citation_publication_date=1997; citation_pages=736-741; citation_id=CR12

citation_journal_title=J. Pharm. Sci.; citation_title=Effect of high molecular mobility of poly(vinyl alcohol) on protein stability of lyophilized g-globulin formulations; citation_author=S. Yoshioka, Y. Aso, Y. Nakai, S. Kojima; citation_volume=87; citation_publication_date=1998; citation_pages=147-151; citation_id=CR13

citation_journal_title=J. Polym. Sci. Polym. Chem. Ed.; citation_title=Reaction of a, b-poly(N-2-hydroxy)-DL-aspartamide with derivatives of carboxylic acid; citation_author=G. Giammona, B. Carlisi, S. Palazzo; citation_volume=25; citation_publication_date=1987; citation_pages=2813-2818; citation_id=CR14

citation_journal_title=Polymer; citation_title=Nuclear magnetic resonance lineshape studies of interpenetrating polymer networks; citation_author=N. Parizel, G. Meyer, G. Weill; citation_volume=12; citation_publication_date=1993; citation_pages=2495-2502; citation_id=CR15

citation_journal_title=J. Chem. Phys.; citation_title=The electric relaxation of mixtures of water and primary alcohol; citation_author=S. Mashimo, S. Kuwabara; citation_volume=90; citation_publication_date=1989; citation_pages=3292-3294; citation_id=CR16

citation_journal_title=Pharm. Res.; citation_title=The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids; citation_author=B. C. Hancock, G. Zografi; citation_volume=11; citation_publication_date=1994; citation_pages=471-477; citation_id=CR17

citation_journal_title=Pharm. Res.; citation_title=Molecular mobility in mixtrures of absorbed water and solid poly(vinylpyrrolidone); citation_author=C. A. Oksanen, G. Zografi; citation_volume=10; citation_publication_date=1993; citation_pages=791-799; citation_id=CR18