Ảnh hưởng của cấu trúc hóa học của phụ gia lên các lớp tribofilm xuất phát từ các hóa chất molybdenum-lưu huỳnh khác nhau

Tribology Letters - Tập 69 - Trang 1-21 - 2021
Aaron L. Barnes1, Ardian Morina1, Rhiann E. Andrew2, Anne Neville1
1Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Leeds, UK
2Infineum UK Ltd., Abingdon, UK

Tóm tắt

Đisulfua molybden (MoS2) là một chất điều chỉnh ma sát hiệu quả có thể được hình thành trên bề mặt từ các phụ gia bôi trơn hòa tan trong dầu. Các hóa chất phụ gia khác nhau có thể được sử dụng để hình thành MoS2 trên bề mặt. Các lớp tribofilm được tạo ra từ ba phụ gia molybdenum khác nhau (MoDTC Dimer, MoDTC Trimer, và este molybdate) đã được nghiên cứu trong các hỗn hợp monoblend phụ gia và các hệ thống hoàn chỉnh. Các lớp tribofilm thu được sau đó đã được đặc trưng với phép quang phổ Raman, XPS, và FIB-TEM. Sự phân bố của MoS2 trên bề mặt thưa hơn nhiều đối với este molybdate so với các phụ gia khác. Không có oxit molybden tinh thể nào được quan sát thấy bằng phép quang phổ Raman, nhưng sự hiện diện của chúng được suy luận từ phân tích XPS. Phân tích XPS cho thấy sự phân bố rất giống nhau của các trạng thái ôxy hóa Mo từ mỗi phụ gia, cho thấy bản chất hóa học của các lớp màng được hình thành từ tất cả các phụ gia có thể là tương tự nhau. Mỗi lớp tribofilm của phụ gia khi được quan sát đều có các dao động MoS3 trong phép quang phổ Raman và các đỉnh XPS persulfide liên quan đến MoS3 vô định hình, do đó thành phần này được trình bày như là một sản phẩm phân hủy ma sát chung cho tất cả các phụ gia. MoDTC trimer có khả năng hơn trong việc tạo ra thành phần vô định hình này trên các bề mặt tiếp xúc do sự tương đồng về cấu trúc với polymer phối hợp MoS3.

Từ khóa

#MoS2 #phụ gia bôi trơn #tribofilm #phân tích XPS #quang phổ Raman #hóa học molybden-lưu huỳnh.

Tài liệu tham khảo

Holmberg, K., Erdemir, A.: The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 135, 389–396 (2019). https://doi.org/10.1016/j.triboint.2019.03.024 Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263–284 (2017). https://doi.org/10.1007/s40544-017-0183-5 Wong, V.W., Tung, S.C.: Overview of automotive engine friction and reduction trends–effects of surface, material, and lubricant-additive technologies. Friction 4, 1–28 (2016). https://doi.org/10.1007/s40544-016-0107-9 Song, I., Park, C., Choi, H.C.: Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv. 5, 7495–7514 (2015). https://doi.org/10.1039/C4RA11852A Serpini, E., Rota, A., Valeri, S., Polcar, T., Nicolini, P., Ukraintsev, E.: Tribology international nanoscale frictional properties of ordered and disordered MoS 2. Tribiol. Int. 136, 67–74 (2019). https://doi.org/10.1016/j.triboint.2019.03.004 Khaemba, D.N., Neville, A., Morina, A.: A methodology for Raman characterisation of MoDTC tribofilms and its application in investigating the influence of surface chemistry on friction performance of MoDTC lubricants. Tribol. Lett. 59, 1–17 (2015). https://doi.org/10.1007/s11249-015-0566-6 Okubo, H., Yonehara, M., Sasaki, S.: In situ Raman observations of the formation of MoDTC-derived tribofilms at steel/steel contact under boundary lubrication. Tribol. Trans. 61, 1040–1047 (2018). https://doi.org/10.1080/10402004.2018.1462421 Ponjavic, A., Lemaigre, T., Southby, M., Spikes, H.A.: Influence of NOxand air on the ageing behaviour of MoDTC. Tribol. Lett. 65, 1–7 (2017). https://doi.org/10.1007/s11249-017-0836-6 De Feo, M., Minfray, C., De Barros Bouchet, M.I., Thiebaut, B., Martin, J.M.: MoDTC friction modifier additive degradation: correlation between tribological performance and chemical changes. RSC Adv. 5, 93786–93796 (2015). https://doi.org/10.1039/c5ra15250j De Feo, M., Minfray, C., De Barros Bouchet, M.I., Thiebaut, B., Le Mogne, T., Vacher, B., Martin, J.M.: Ageing impact on tribological properties of MoDTC-containing base oil. Tribol. Int. 92, 126–135 (2015). https://doi.org/10.1016/j.triboint.2015.04.014 Grossiord, C., Varlot, K., Martin, J., Mogne, T.L., Esnouf, C.: MoS2 single sheet lubrication by molybdenum. Tribol. Int. 31, 737–743 (1998) De Barros Bouchet, M.I., Martin, J.M., Le Mogne, T., Bilas, P., Vacher, B., Yamada, Y.: Mechanisms of MoS2 formation by MoDTC in presence of ZnDTP: effect of oxidative degradation. Wear 258, 1643–1650 (2005). https://doi.org/10.1016/j.wear.2004.11.019 Graham, J., Spikes, H., Korcek, S.: The friction reducing properties of molybdenum dialkyldithiocarbamate additives: part I—factors influencing friction reduction. Tribol. Trans. 44, 626–636 (2001). https://doi.org/10.1080/10402000108982504 Okubo, H., Tadokoro, C., Sasaki, S.: In situ Raman-SLIM monitoring for the formation processes of MoDTC and ZDDP tribofilms at steel/steel contacts under boundary lubrication. Tribol. Online 15, 105–116 (2020). https://doi.org/10.2474/trol.15.105 Khaemba, D.N., Neville, A., Morina, A.: New insights on the decomposition mechanism of molybdenum dialkyldithiocarbamate (MoDTC): a Raman spectroscopic study. RSC Adv. 6, 38637–38646 (2016). https://doi.org/10.1039/C6RA00652C Gorbatchev, O., De Barros Bouchet, M.I., Martin, J.M., Léonard, D., Le-Mogne, T., Iovine, R., Thiebaut, B., Héau, C.: Friction reduction efficiency of organic Mo-containing FM additives associated to ZDDP for steel and carbon-based contacts. Tribol. Int. 99, 278–288 (2016). https://doi.org/10.1016/j.triboint.2016.03.035 Haque, T., Morina, A., Neville, A., Kapadia, R., Arrowsmith, S.: Effect of oil additives on the durability of hydrogenated DLC coating under boundary lubrication conditions. Wear 266, 147–157 (2009). https://doi.org/10.1016/j.wear.2008.06.011 Haque, T., Morina, A., Neville, A., Kapadia, R., Arrowsmith, S.: Non-ferrous coating/lubricant interactions in tribological contacts: assessment of tribofilms. Tribol. Int. 40, 1603–1612 (2007). https://doi.org/10.1016/j.triboint.2007.01.023 De Barros Bouchet, M.I., Martin, J.M., Oumahi, C., Gorbatchev, O., Afanasiev, P., Geantet, C., Iovine, R., Thiebaut, B., Heau, C.: Booster effect of fatty amine on friction reduction performance of Mo-based additives. Tribol. Int. 119, 600–607 (2018). https://doi.org/10.1016/j.triboint.2017.11.039 Stiefel, E.I., McConnachie, J.M. and Leta, D.P., “Method for Enhancing and Restoring Reduction Friction Effectiveness”, U.S. Patent 5,888,945 (1999) Waddoups, M., Hartley, R.J. and Miyoshi, T., “Lubricating Oil Composition Containing Two Molybdenum Additives”, U.S. Patent 6,074,993 (2000) Hartley, R.J., Waddoups, M., Bell, I.A.W., Bidwell, T.R., Farnsworth, G.R. and Miyoshi, T., “Lubricating Oil Composition”, U.S. Patent 6,300,291 B1 (2001) Pawlicki, A.A., Bansal, D.G., Borodinov, N., Belianinov, A., Cogen, K., Clarke, D., Sumpter, B.G., Ovchinnikova, O.S.: In situ multimodal imaging for nanoscale visualization of tribofilm formation. J. Appl. Phys. (2020). https://doi.org/10.1063/1.5140480 Stiefel, E.I., McConnachie, J.M., Leta, D.P., Francisco, M.A., Coyle, C.L., Guzi, P.J. and Pictroski, G.G., "Trinuclear Molybdenum Multifunctional Additive For Lubricating Oils", U.S. Patent 6,232,276 B1 (2001) Price, J.A. and Neblett, R.F., "Preparation of Glycol Molybdate Complexes", U.S. Patent 3,285,942 (1966) Coupland, K. and Smith, C.R., "Organo Molybdenum Friction Reducing Antiwear Additives", U.S. Patent 4,164,473 (1979) Rowan, E.V., Karol, T.J. and Farmer, H.H., "Organic Molybdenum Complexes" U.S. Patent 4,889,647 (1985) Karol, T.J., "Organic Molybdenum Complexes" U.S. Patent 5,137,647 (1992) Chinas-Castillo, F., Lara-Romero, J., Alonso-Núñez, G., Barceinas-Sánchez, J.D.O., Jiménez-Sandoval, S.: Friction reduction by water-soluble ammonium thiometallates. Tribol. Lett. 26, 137–144 (2007). https://doi.org/10.1007/s11249-006-9179-4 Chiñas-Castillo, F., Lara-Romero, J., Alonso-Núñez, G., Barceinas-Sánchez, J.D.D.O., Jiménez-Sandoval, S.: MoS 2 films formed by in-contact decomposition of water-soluble tetraalkylammonium thiomolybdates. Tribol. Lett. 29, 155–161 (2008). https://doi.org/10.1007/s11249-007-9292-z Oumahi, C., De Barros-Bouchet, M.I., Le Mogne, T., Charrin, C., Loridant, S., Geantet, C., Afanasiev, P., Thiebaut, B.: MoS2 formation induced by amorphous MoS3 species under lubricated friction. RSC Adv. 8, 25867–25872 (2018). https://doi.org/10.1039/c8ra03317j Miklozic, K.T., Graham, J., Spikes, H.: Chemical and physical analysis of reaction films formed by molybdenum dialkyl-dithiocarbamate friction modifier additive using Raman and atomic force microscopy. Tribol. Lett. 11, 71–81 (2001). https://doi.org/10.1023/A:1016655316322 Sherwood, P.M.A.: The use and misuse of curve fitting in the analysis of core X-ray photoelectron spectroscopic data. Surf. Interface Anal. 51, 589–610 (2019). https://doi.org/10.1002/sia.6629 Choi, J., Thompson, L.T.: XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 93, 143–149 (1996) Lichtman, D., Craig, J.H., Sailer, V., Drinkwine, M.: AES and XPS spectra of sulfur in sulfur compounds. Appl. Surf. Sci. 7, 325–331 (1981). https://doi.org/10.1016/0378-5963(81)90080-5 Ganta, D., Sinha, S., Haasch, R.T.: 2-D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra 21, 19–27 (2014). https://doi.org/10.1116/11.20140401 Tang, M.L., Grauer, D.C., Lassalle-Kaiser, B., Yachandra, V.K., Amirav, L., Long, J.R., Yano, J., Alivisatos, A.P.: Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. Angew. Chem. Int. Ed. 50, 10203–10207 (2011). https://doi.org/10.1002/anie.201104412 Merki, D., Fierro, S., Vrubel, H., Hu, X.: Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011). https://doi.org/10.1039/c1sc00117e Lee, C.H., Lee, S., Lee, Y.K., Jung, Y.C., Ko, Y.I., Lee, D.C., Joh, H.I.: Understanding the origin of formation and active sites for thiomolybdate [Mo3S13]2- clusters as hydrogen evolution catalyst through the selective control of sulfur atoms. ACS Catal. 8, 5221–5227 (2018). https://doi.org/10.1021/acscatal.8b01034 Chang, C.H., Chan, S.S.: Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2. J. Catal. 72, 139–148 (1981). https://doi.org/10.1016/0021-9517(81)90085-3 Tran, P.D., Tran, T.V., Orio, M., Torelli, S., Truong, Q.D., Nayuki, K., Sasaki, Y., Chiam, S.Y., Yi, R., Honma, I., Barber, J., Artero, V.: Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 15, 640–646 (2016). https://doi.org/10.1038/nmat4588 Spevack, P.A., McIntyre, N.S.: A Raman and XPS investigation of supported molybdenum oxide thin films. 2. Reactions with hydrogen sulfide. J. Phys. Chem. 97, 11031–11036 (1993). https://doi.org/10.1021/j100144a021 Rai, Y., Neville, A., Morina, A.: Transient processes of MoS2 tribofilm formation under boundary lubrication. Lubr. Sci. 28, 449–471 (2016) Morina, A., Neville, A.: Understanding the composition and low friction tribofilm formation/removal in boundary lubrication. Tribol. Int. 40, 1696–1704 (2007). https://doi.org/10.1016/j.triboint.2007.02.001 Fu, W., Yang, S., Yang, H., Guo, B., Huang, Z.: 2D amorphous MoS 3 nanosheets with porous network structures for scavenging toxic metal ions from synthetic acid mine drainage. J. Mater. Chem. A 7, 18799–18806 (2019). https://doi.org/10.1039/c9ta05861c Brito, J.L., Ilija, M., Hernández, P.: Thermal and reductive decomposition of ammonium thiomolybdates. Thermochim. Acta 256, 325–338 (1995) Walton, R.I., Dent, A.J., Hibble, S.J.: In situ investigation of the thermal decomposition of ammonium tetrathiomolybdate using combined time-resolved X-ray absorption spectroscopy and X-ray diffraction. Chem. Mater. 10, 3737–3745 (1998). https://doi.org/10.1021/cm980716h Poisot, M., Bensch, W., Fuentes, S., Alonso, G.: Decomposition of tetra-alkylammonium thiomolybdates characterised by thermoanalysis and mass spectrometry. Thermochim. Acta. 444, 35–45 (2006). https://doi.org/10.1016/j.tca.2006.02.025 Yue, D., Qian, X., Zhang, Z., Kan, M., Ren, M., Zhao, Y.: CdTe/CdS core/shell quantum dots cocatalyzed by sulfur tolerant [Mo 3 S 13 ] 2− nanoclusters for efficient visible-light-driven hydrogen evolution. ACS Sustain. Chem. Eng. 4, 6653–6658 (2016). https://doi.org/10.1021/acssuschemeng.6b01520 Hellstern, T.R., Kibsgaard, J., Tsai, C., Palm, D.W., King, L.A., Abild-Pedersen, F., Jaramillo, T.F.: Investigating catalyst-support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2- nanoclusters. ACS Catal. 7, 7126–7130 (2017). https://doi.org/10.1021/acscatal.7b02133 Benck, J.D., Chen, Z., Kuritzky, L.Y., Forman, A.J., Jaramillo, T.F.: Amorphous molybdenum sul fi de catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2(9), 1916–1923 (2012). https://doi.org/10.1021/cs300451q Liang, K.S., deNaufville, J.P., Jacobson, A.J., Chianelli, R.R., Betts, F.: Structure of amorphous transition metal sulfides. J. Non Cryst. Solids. 35–36, 1249–1254 (1980). https://doi.org/10.1016/0022-3093(80)90369-5 Tang, M.L., Grauer, D.C., Lassalle-kaiser, B., Yachandra, V.K., Amirav, L., Long, J.R., Yano, J., Alivisatos, A.P.: Structural and electronic study of an amorphous MoS 3 hydrogen- generation catalyst on a quantum-controlled photosensitizer. Angew. Chem. 123, 10385–10389 (2011). https://doi.org/10.1002/ange.201104412 Camacho-López, M.A., Haro-Poniatowski, E., Lartundo-Rojas, L., Livage, J., Julien, C.M.: Amorphous-crystalline transition studied in hydrated MoO3. Mater. Sci. Eng. B 135, 88–94 (2006). https://doi.org/10.1016/j.mseb.2006.08.041 Ajito, K., Nagahara, L.A., Tryk, D.A., Hashimoto, K., Fujishima, A.: Study of the photochromic properties of amorphous MoO3 films using Raman microscopy. J. Phys. Chem. 99, 16383–16388 (1995). https://doi.org/10.1021/j100044a028 Weber, T., Muijsers, J.C., Niemantsverdriet, J.W.: Structure of amorphous MoS3. J. Phys. Chem. 99, 9194–9200 (1995). https://doi.org/10.1021/j100022a037 Cao, P., Peng, J., Liu, S., Cui, Y., Hu, Y., Chen, B., Li, J., Zhai, M.: Tuning the composition and structure of amorphous molybdenum sulfide/carbon black nanocomposites by radiation technique for highly efficient hydrogen evolution. Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/s41598-017-16015-y Hibble, S.J., Wood, G.B.: Modeling the structure of amorphous MoS3: a neutron diffraction and reverse Monte Carlo study. J. Am. Chem. Soc. 126, 959–965 (2004). https://doi.org/10.1021/ja037666o Tran, P.D., Duong, T.M., Nguyen, P.D., Nguyen, A.D., Le, L.T., Nguyen, L.T., Pham, H.V.: Insights into the electrochemical polymerization of [Mo3S13]2- generating amorphous molybdenum sulfide. Chemistry (2019). https://doi.org/10.1002/chem.201903098 Xu, D., Wang, C., Espejo, C., Wang, J., Neville, A., Morina, A.: Understanding the friction reduction mechanism based on molybdenum disulfide tribofilm formation and removal. Langmuir 34, 13523–13533 (2018). https://doi.org/10.1021/acs.langmuir.8b02329 Peeters, S., Restuccia, P., Loehlé, S., Thiebaut, B., Righi, M.C.: Characterization of molybdenum dithiocarbamates by first-principles calculations. J. Phys. Chem. A 123, 7007–7015 (2019). https://doi.org/10.1021/acs.jpca.9b03930 Peeters, S., Restuccia, P., Loehlé, S., Thiebaut, B., Righi, M.C.: Tribochemical reactions of MoDTC lubricant additives with iron by quantum mechanics/molecular mechanics simulations. J. Phys. Chem. C (2020). https://doi.org/10.1021/acs.jpcc.0c02211