The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence

Scientific Reports - Tập 6 Số 1
Tao Wang1, Yan Yuan1, Hui Zou1, Jin‐Long Yang1, Suping Zhao1, Yonggang Ma1, Yi Wang1, Jianchun Bian1, Zongping Liu2, Jianhong Gu1, Jiaqiao Zhu1
1College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P.R. China
2Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P.R. China

Tóm tắt

AbstractAutophagy is protective in cadmium (Cd)-induced oxidative damage. Endoplasmic reticulum (ER) stress has been shown to induce autophagy in a process requiring the unfolded protein response signalling pathways. Cd treatment significantly increased senescence in neuronal cells, which was aggravated by 3-MA or silencing of Atg5 and abolished by rapamycin. Cd increased expression of ER stress regulators Bip, chop, eIf2α, and ATF4, and activated autophagy as evidenced by upregulated LC3. Moreover, the ER stress inhibitor mithramycin inhibited the expression of ER stress protein chaperone Bip and blocked autophagic flux. Downregulating Bip significantly blocked the conversion of LC3-I to LC3-II, decreased LC3 puncta formation, and prevented the increase of senescence in PC12 cells. Interestingly, knocking down Bip regulated the expression of p-AMPK, p-AKT and p-s6k induced by Cd. BAPTA, a Bip inhibitor, decreased the expression of p-AMPK and LC3-II, but enhanced neuronal senescence. In addition, we found that siRNA for Bip enhanced GATA4 expression after 6 h Cd exposure in PC12 cells, while rapamycin treatment decreased GATA4 levels induced by 24 h Cd exposure. These results indicate that autophagy degraded GATA4 in a Bip-dependent way. Our findings suggest that autophagy regulated by Bip expression after ER stress suppressed Cd-induced neuronal senescence.

Từ khóa


Tài liệu tham khảo

Muneer, S., Hakeem, K. R., Mohamed, R. & Lee, J. H. Cadmium toxicity induced alterations in the root proteome of green gram in contrasting response towards iron supplement. International journal of molecular sciences 15, 6343–6355, doi: 10.3390/ijms15046343 (2014).

Johri, N., Jacquillet, G. & Unwin, R. Heavy metal poisoning: the effects of cadmium on the kidney. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine 23, 783–792, doi: 10.1007/s10534-010-9328-y (2010).

Kocak, M. & Akcil, E. The effects of chronic cadmium toxicity on the hemostatic system. Pathophysiology of haemostasis and thrombosis 35, 411–416, doi: 10.1159/000102047 (2006).

Akesson, A. et al. Cadmium-induced effects on bone in a population-based study of women. Environmental health perspectives 114, 830–834 (2006).

Thompson, J. & Bannigan, J. Cadmium: toxic effects on the reproductive system and the embryo. Reproductive toxicology 25, 304–315, doi: 10.1016/j.reprotox.2008.02.001 (2008).

Lopez, E., Figueroa, S., Oset-Gasque, M. J. & Gonzalez, M. P. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. British journal of pharmacology 138, 901–911, doi: 10.1038/sj.bjp.0705111 (2003).

Okuda, B., Iwamoto, Y., Tachibana, H. & Sugita, M. Parkinsonism after acute cadmium poisoning. Clinical neurology and neurosurgery 99, 263–265 (1997).

Johnson, S. Gradual micronutrient accumulation and depletion in Alzheimer’s disease. Medical hypotheses 56, 595–597, doi: 10.1054/mehy.2000.1301 (2001).

Yuan, Y. et al. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PloS one 8, e64330, doi: 10.1371/journal.pone.0064330 (2013).

Chen, L. et al. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free radical biology & medicine 50, 624–632, doi: 10.1016/j.freeradbiomed.2010.12.032 (2011).

Wang, J. Z. & Wang, Z. H. Senescence may mediate conversion of tau phosphorylation-induced apoptotic escape to neurodegeneration. Experimental gerontology 68, 82–86, doi: 10.1016/j.exger.2015.03.007 (2015).

Brites, D. Cell ageing: a flourishing field for neurodegenerative diseases (2015).

Roninson, I. B. Tumor cell senescence in cancer treatment. Cancer research 63, 2705–2715 (2003).

Elmore, L. W., Di, X., Dumur, C., Holt, S. E. & Gewirtz, D. A. Evasion of a single-step, chemotherapy-induced senescence in breast cancer cells: implications for treatment response. Clinical cancer research: an official journal of the American Association for Cancer Research 11, 2637–2643, doi: 10.1158/1078-0432.CCR-04-1462 (2005).

Toussaint, O., Royer, V., Salmon, M. & Remacle, J. Stress-induced premature senescence and tissue ageing. Biochemical pharmacology 64, 1007–1009 (2002).

Adams, P. D. Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Molecular cell 36, 2–14, doi: 10.1016/j.molcel.2009.09.021 (2009).

Golde, T. E. & Miller, V. M. Proteinopathy-induced neuronal senescence: a hypothesis for brain failure in Alzheimer’s and other neurodegenerative diseases. Alzheimer’s research & therapy 1, 5, doi: 10.1186/alzrt5 (2009).

Wang, T. et al. Autophagy Plays a Cytoprotective Role During Cadmium-Induced Oxidative Damage in Primary Neuronal Cultures. Biological trace element research 168, 481–489, doi: 10.1007/s12011-015-0390-8 (2015).

Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. Journal of cellular physiology 192, 1–15, doi: 10.1002/jcp.10119 (2002).

Song, J. et al. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling. Experimental neurobiology 25, 24–32, doi: 10.5607/en.2016.25.1.24 (2016).

Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes & development 24, 2463–2479, doi: 10.1101/gad.1971610 (2010).

Young, A. R. & Narita, M. SASP reflects senescence. EMBO reports 10, 228–230, doi: 10.1038/embor.2009.22 (2009).

Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nature reviews. Cancer 9, 81–94, doi: 10.1038/nrc2560 (2009).

Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS biology 6, 2853–2868, doi: 10.1371/journal.pbio.0060301 (2008).

Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075, doi: 10.1038/nature06639 (2008).

Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nature reviews. Molecular cell biology 2, 211–216, doi: 10.1038/35056522 (2001).

Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. The Journal of clinical investigation 118, 2190–2199, doi: 10.1172/JCI33585 (2008).

Marwick, C. ‘Desperate use’ gene therapy guidelines ready. Jama 269, 843 (1993).

Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

Gamerdinger, M. et al. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. The EMBO journal 28, 889–901, doi: 10.1038/emboj.2009.29 (2009).

Han, X. et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging cell 15, 416–427, doi: 10.1111/acel.12446 (2016).

Kandala, P. K. & Srivastava, S. K. Regulation of macroautophagy in ovarian cancer cells in vitro and in vivo by controlling glucose regulatory protein 78 and AMPK. Oncotarget 3, 435–449, doi: 10.18632/oncotarget.483 (2012).

Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature cell biology 13, 1016–1023, doi: 10.1038/ncb2329 (2011).

Salminen, A. & Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing research reviews 11, 230–241, doi: 10.1016/j.arr.2011.12.005 (2012).

Apfeld, J., O’Connor, G., McDonagh, T., DiStefano, P. S. & Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes & development 18, 3004–3009, doi: 10.1101/gad.1255404 (2004).

Stenesen, D. et al. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell metabolism 17, 101–112, doi: 10.1016/j.cmet.2012.12.006 (2013).

Ido, Y. et al. Resveratrol prevents oxidative stress-induced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes. PloS one 10, e0115341, doi: 10.1371/journal.pone.0115341 (2015).

Spacek, J. & Harris, K. M. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. The Journal of neuroscience: the official journal of the Society for Neuroscience 17, 190–203 (1997).

Yorimitsu, T. & Klionsky, D. J. Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy 3, 160–162 (2007).

Hoyer-Hansen, M. & Jaattela, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell death and differentiation 14, 1576–1582, doi: 10.1038/sj.cdd.4402200 (2007).

Kouroku, Y. et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell death and differentiation 14, 230–239, doi: 10.1038/sj.cdd.4401984 (2007).

Penas, C. et al. Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell death and differentiation 18, 1617–1627, doi: 10.1038/cdd.2011.24 (2011).

Verfaillie, T., Salazar, M., Velasco, G. & Agostinis, P. Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy. International journal of cell biology 2010, 930509, doi: 10.1155/2010/930509 (2010).

Li, J. et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell death and differentiation 15, 1460–1471, doi: 10.1038/cdd.2008.81 (2008).

Zu, K. et al. Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25, 546–554, doi: 10.1038/sj.onc.1209071 (2006).

Li, W. et al. Cisplatin-induced senescence in ovarian cancer cells is mediated by GRP78. Oncology reports 31, 2525–2534, doi: 10.3892/or.2014.3147 (2014).

Sasaki, M., Yoshimura-Miyakoshi, M., Sato, Y. & Nakanuma, Y. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. Journal of gastroenterology 50, 984–995, doi: 10.1007/s00535-014-1033-0 (2015).

Kwon, O. Y. et al. The endoplasmic reticulum chaperone GRP94 is induced in the thyrocytes by cadmium. Zeitschrift fur Naturforschung. C, Journal of biosciences 54, 573–577 (1999).

Timblin, C. R., Janssen, Y. M., Goldberg, J. L. & Mossman, B. T. GRP78, HSP72/73, and cJun stress protein levels in lung epithelial cells exposed to asbestos, cadmium, or H2O2. Free radical biology & medicine 24, 632–642 (1998).

Liu, F., Inageda, K., Nishitai, G. & Matsuoka, M. Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells. Environmental health perspectives 114, 859–864 (2006).

Arceci, R. J., King, A. A., Simon, M. C., Orkin, S. H. & Wilson, D. B. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Molecular and cellular biology 13, 2235–2246 (1993).

Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612, doi: 10.1126/science.aaa5612 (2015).

Cao, X. & Li, M. A New Pathway for Senescence Regulation. Genomics, proteomics & bioinformatics 13, 333–335, doi: 10.1016/j.gpb.2015.11.002 (2015).

Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes & development 23, 798–803, doi: 10.1101/gad.519709 (2009).

Narita, M. et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966–970, doi: 10.1126/science.1205407 (2011).

Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. The Journal of cell biology 202, 129–143, doi: 10.1083/jcb.201212110 (2013).

Gewirtz, D. A. Autophagy and senescence: a partnership in search of definition. Autophagy 9, 808–812, doi: 10.4161/auto.23922 (2013).

Wang, T. et al. Cadmium induced inhibition of autophagy is associated with microtubule disruption and mitochondrial dysfunction in primary rat cerebral cortical neurons. Neurotoxicology and teratology 53, 11–18, doi: 10.1016/j.ntt.2015.11.007 (2016).

Xing, J. Z. et al. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chemical research in toxicology 18, 154–161, doi: 10.1021/tx049721s (2005).

Kondo, Y., Kanzawa, T., Sawaya, R. & Kondo, S. The role of autophagy in cancer development and response to therapy. Nature reviews. Cancer 5, 726–734, doi: 10.1038/nrc1692 (2005).

Qin, L., Wang, Z., Tao, L. & Wang, Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 6, 239–247 (2010).

Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature reviews. Molecular cell biology 8, 729–740, doi: 10.1038/nrm2233 (2007).

Gosselin, K. et al. Senescent keratinocytes die by autophagic programmed cell death. The American journal of pathology 174, 423–435, doi: 10.2353/ajpath.2009.080332 (2009).

Chen, G. et al. Autophagy is a protective response to ethanol neurotoxicity. Autophagy 8, 1577–1589, doi: 10.4161/auto.21376 (2012).

Gong, F. R. et al. PP2A inhibitors arrest G2/M transition through JNK/Sp1- dependent down-regulation of CDK1 and autophagy-dependent up-regulation of p21. Oncotarget 6, 18469–18483, doi: 10.18632/oncotarget.4063 (2015).

Kang, H. T., Lee, K. B., Kim, S. Y., Choi, H. R. & Park, S. C. Autophagy impairment induces premature senescence in primary human fibroblasts. PloS one 6, e23367, doi: 10.1371/journal.pone.0023367 (2011).

Terman, A., Dalen, H. & Brunk, U. T. Ceroid/lipofuscin-loaded human fibroblasts show decreased survival time and diminished autophagocytosis during amino acid starvation. Experimental gerontology 34, 943–957 (1999).

Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889, doi: 10.1038/nature04724 (2006).

Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes & development 25, 795–800, doi: 10.1101/gad.2016211 (2011).

Sui, X. et al. p53 suppresses stress-induced cellular senescence via regulation of autophagy under the deprivation of serum. Molecular medicine reports 11, 1214–1220, doi: 10.3892/mmr.2014.2853 (2015).

Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS biology 4, e423, doi: 10.1371/journal.pbio.0040423 (2006).

Zhang, X. Y. et al. Endoplasmic reticulum chaperone GRP78 is involved in autophagy activation induced by ischemic preconditioning in neural cells. Molecular brain 8, 20, doi: 10.1186/s13041-015-0112-3 (2015).

Senft, D. & Ronai, Z. A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends in biochemical sciences 40, 141–148, doi: 10.1016/j.tibs.2015.01.002 (2015).

Di Nardo, A. et al. Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner. The Journal of neuroscience: the official journal of the Society for Neuroscience 29, 5926–5937, doi: 10.1523/JNEUROSCI.0778-09.2009 (2009).

Brewer, J. W., Hendershot, L. M., Sherr, C. J. & Diehl, J. A. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proceedings of the National Academy of Sciences of the United States of America 96, 8505–8510 (1999).

Han, C., Jin, L., Mei, Y. & Wu, M. Endoplasmic reticulum stress inhibits cell cycle progression via induction of p27 in melanoma cells. Cellular signalling 25, 144–149, doi: 10.1016/j.cellsig.2012.09.023 (2013).

Liu, J. et al. Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy. American journal of physiology. Cell physiology 308, C621–630, doi: 10.1152/ajpcell.00096.2014 (2015).

Kitamura, M. & Hiramatsu, N. The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine 23, 941–950, doi: 10.1007/s10534-010-9296-2 (2010).

Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036, doi: 10.1038/nature03029 (2004).

Cook, K. L. et al. Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer research 72, 3337–3349, doi: 10.1158/0008-5472.CAN-12-0269 (2012).

Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461, doi: 10.1126/science.1196371 (2011).