The Composite Genome of the Legume Symbiont Sinorhizobium meliloti

American Association for the Advancement of Science (AAAS) - Tập 293 Số 5530 - Trang 668-672 - 2001
Francis Galibert1, Turlough M. Finan2, Sharon R. Long3,4, Alfred Pühler5, Pia Abola6, Frédéric Ampe7, Frédérique Barloy-Hubler1, Melanie J. Barnett3, Anke Becker5, P. Boistard7, Gordana Bothe8, Marc Boutry9, Leah Bowser6, Jens Buhrmester5, Édouard Cadieu1, Delphine Capela7,1, Patrick Chain2, Alison Cowie2, Ronald W. Davis6, Stéphane Dreano1, Nancy A. Federspiel6, Robert F. Fisher3, Stéphanie Gloux1, Thérèse Godrie10, André Goffeau9, Brian Golding2, Jérôme Gouzy7, Mani Gurjal6, Ismael Hernández‐Lucas2, Andrea Hong3, Lucas Huizar6, Richard W. Hyman6, Ted Jones6, Daniel Kahn7, Michael L. Kahn11, Sumner M. Kalman6, David H. Keating3,4, Ernö Kiss7, C. Komp6, Valérie Lelaure1, David Masuy9, Curtis Palm6, Melicent C. Peck3, Thomas Pohl8, Daniel Portetelle10, Bénédicte Purnelle9, U. Ramsperger8, Raymond Surzycki6, Patricia Thébault7, Micheline Vandenbol10, Frank‐Jörg Vorhölter5, Stefan Weidner5, Derek H. Wells3, Kim Wong2, Keh‐Chia Yeh3,4, Jacques Batut7
1UMR6061-CNRS, Laboratoire de Génétique et Développement, Faculté de Médecine, 2 avenue du Pr. Léon Bernard, F-35043 Rennes cedex, France.
2Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
3Department of Biological Sciences, Stanford University, Stanford, CA 94305 USA
4Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA
5Universität Bielefeld, Biologie VI (Genetik), Universitätsstrasse 25, D-33615 Bielefeld, Germany.
6Stanford Center for DNA Sequencing and Technology, Stanford, CA 94305, USA.
7Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR215-CNRS-Institut National de la Recherche Agronomique (INRA), Chemin de Borde Rouge, BP 27, F-31326 Castanet Tolosan Cedex, France.
8GATC Biotech AG, Jakob-Stadler-Platz GmbH 7, D-78467 Konstanz, Germany.
9Unité de Biochimie physiologique, Université Catholique de Louvain, Place Croix du Sud 2, Bte 20, B-1348 Louvain-la-Neuve, Belgium.
10Unité de Biologie Animale et Microbienne, Faculté des Sciences Agronomiques de Gembloux, Avenue Maréchal Juin 6, B-5030 Gembloux, Belgium.
11Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA

Tóm tắt

The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N 2 ) to ammonium (NH 4 + ). We present here the annotated DNA sequence of the α-proteobacterium Sinorhizobium meliloti , the symbiont of alfalfa. The tripartite 6.7-megabase (Mb) genome comprises a 3.65-Mb chromosome, and 1.35-Mb pSymA and 1.68-Mb pSymB megaplasmids. Genome sequence analysis indicates that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution. The genome sequence will be useful in understanding the dynamics of interkingdom associations and of life in soil environments.

Từ khóa


Tài liệu tham khảo

Sequence accession numbers: chromosome (EMBL CON entry); pSymA accession: (GenBank); pSymB accession number (EMBL).

Annotation tools and supplementary data are available at

Kaneko T., et al., DNA Res. 7, 331 (2000).

Freiberg C., et al., Nature 387, 394 (1997).

Gottfert M., et al., J. Bacteriol. 183, 1405 (2001).

M. J. Barnett et al. Proc. Natl. Acad. Sci. U.S.A. in press.

D. Capela et al. Proc. Natl. Acad. Sci. U.S.A. in press.

T. Finan et al. Proc. Natl. Acad. Sci. U.S.A. in press.

Schwedock J. S., Long S. R., Genetics 132, 899 (1992).

Renalier M. H., et al., J. Bacteriol. 169, 2239 (1987).

Flores M., et al., J. Bacteriol. 169, 5782 (1987).

Genes are considered paralogs if their products match over more than 80% of their length with more than 30% amino acid sequence identity.

Viprey V., Rosenthal A., Broughton W. J., Perret X., Genome Biol. 1, 1 (2000).

Oresnik I. J., Liu S. L., Yost C. K., Hynes M. F., J. Bacteriol. 182, 3582 (2000).

10.1073/pnas.061029298

Matthysse A. G., Yarnall H. A., Young N., J. Bacteriol. 178, 5302 (1996).

10.1093/emboj/19.13.3223

Perret X., Staehelin C., Broughton W. J., Microbiol. Mol. Biol. Rev. 64, 180 (2000).

Viprey V., Perret X., Broughton W. J., Subcell. Biochem. 33, 437 (2000).

Schwedock J. S., Long S. R., Mol. Plant. Microbe Interact. 11, 1119 (1994).

BlastP comparisons of the M. loti and S. meliloti proteins were run using the following parameters: expect value threshold = 0.1; gap opening penalty = 9; gap extension penalty = 2. Genes are considered possible orthologs if they match over 80% of either the query or subject protein length with an expect of less than 1e-6.

We are grateful to Thomas Schiex [Biométrie et Intelligence artificielle Institut National de la Recherche Agronomique (INRA) Toulouse France] for the Frame D program. D.C. was supported by a CNRS (BDI) doctoral fellowship and E.K. by an INRA postdoctoral fellowship. We also thank Lion Bioscience AG (Heidelberg Germany) and IIT Biotech Gmbh (Bielefeld Germany) for their participation. This work has been supported by grants from the European Union (MELILO BIO4-CT98-0109) to F.G. A.P. A.G. D.P. T.P. and J.B. the Natural Sciences and Engineering Research Council of Canada (NSERC) Research Strategic and Genomics to T.M.F. and B.G. the Bundesministerium für Forschung und Technologie (0311752) to A.P. the CNRS (Genome Research Program) and INRA (AIP98/P00206) to F.G. and J.B. the U.S. Department of Energy Energy Biosciences Program (DE-FG03-90ER20010) to S.R.L. and (DE-FG03-99ER20225) to M.K.; and the U.S. NIH (GM30962) and the Howard Hughes Medical Institute to S.R.L.