The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution

American Association for the Advancement of Science (AAAS) - Tập 287 Số 5458 - Trang 1615-1622 - 2000
Ilme Schlichting1, Joel Berendzen2, Kelvin Chu2,3, Ann Stock4, Shelley A. Maves5, David E. Benson5, Robert M. Sweet6, Dagmar Ringe7,8, Gregory A. Petsko8, Stephen G. Sligar5,1
1Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry, Otto Hahn Strasse 11, 44227 Dortmund, Germany.
2Biophysics Group, Mail Stop D454, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3University of Vermont
4Center for Advanced Biotechnology and Medicine, 679 Joes Lane, Piscataway, NJ 08854–5638, USA.
5Beckman Institute, University of Illinois 405 N. Mathews, Urbana, IL 61801, USA
6Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
7Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society
8Rosenstiel Center, Brandeis University, 415 South Street, Waltham, MA 02254–9110, USA.

Tóm tắt

Members of the cytochrome P450 superfamily catalyze the addition of molecular oxygen to nonactivated hydrocarbons at physiological temperature—a reaction that requires high temperature to proceed in the absence of a catalyst. Structures were obtained for three intermediates in the hydroxylation reaction of camphor by P450cam with trapping techniques and cryocrystallography. The structure of the ferrous dioxygen adduct of P450cam was determined with 0.91 angstrom wavelength x-rays; irradiation with 1.5 angstrom x-rays results in breakdown of the dioxygen molecule to an intermediate that would be consistent with an oxyferryl species. The structures show conformational changes in several important residues and reveal a network of bound water molecules that may provide the protons needed for the reaction.

Từ khóa


Tài liệu tham khảo

For a comprehensive review of all aspects of P450 see P. R. Ortiz de Montellano Ed. Cytochrome P450: Structure Mechanism and Biochemistry (Plenum New York ed. 2 1995).

Guengerich F. P., J. Biol. Chem. 266, 10019 (1991);

Porter T. D., Coon M. J., J. Biol. Chem. 266, 13469 (1991);

Capdevila J. H., Falck J. R., Estabrook R. W., FASEB J. 6, 731 (1992);

Kubota M., et al., J. Biochem. 110, 232 (1991).

Hedegaard J., Gunsalus I. C., J. Biol. Chem. 240, 4038 (1965);

Tyson C. A., Lipscomb J. D., Gunsalus I. C., J. Biol. Chem. 247, 5777 (1972);

Sligar S. G., Gunsalus I. C., Proc. Natl. Acad. Sci. U.S.A. 73, 1078 (1976);

; E. J. Mueller P. J. Loida S. G. Sligar in Cytochrome P450: Structure Mechanism and Biochemistry P. R. Ortiz de Montellano Ed. (Plenum New York ed. 2 1995) pp. 83–124.

Poulos T. L., et al., J. Biol. Chem. 260, 16122 (1985);

10.1021/bi00366a049

10.1096/fasebj.6.2.1537455

10.1021/ja00128a019

. Molecular replacement with the coordinates of oxidized P450cam complexed with camphor (PDB code 2CPP) as search model was used to determine the ferric P450.cam structure in a monoclinic crystal form that contains two molecules per asymmetric unit with an intermolecular K + ion binding site. The electron densities of the active sites of the two molecules in the asymmetric unit are not the same but in different crystals of the same complex corresponding molecules have similar electron densities suggesting that the crystal lattice contacts influence the dynamics of the molecules differently. Indeed the crystallographic environments of the two molecules differ especially in the vicinity of the intramolecular K + binding site which is connected through Tyr 96 directly to the camphor binding site. In one molecule this K + site is close to a neighboring molecule in the lattice. In general for the experiments reported here similar electron density features are seen in molecules 1 and 2 but mixtures seem to be present in molecule 2 that could not be modeled satisfactorily. It is possible that the two molecules represent slightly different stages of the reaction or different mixtures of species.

Raag R., Poulos T. L., Biochemistry 28, 7585 (1989).

There are many examples; one is the difference between oxy- and carbonmonoxy-myoglobin. See the lively discussion in

Borman S., Chem. Eng. News 77, 31 (1999).

The number of model compounds that have been synthesized and characterized is too great to permit referencing even a representative sample. For a recent review see J. T. Groves and Y. Han in Cytochrome P450: Structure Mechanism and Biochemistry P. R. Ortiz de Montellano Ed. (Plenum New York ed. 2 1995) pp. 3–48.

White R. E., Coon M. J., Annu. Rev. Biochem. 49, 315 (1980);

Miller V. P., et al., J. Biol. Chem. 267, 8936 (1992);

Patterson W. R., et al., Biochemistry 34, 4342 (1995) .

Sligar S. G., Lipscomb J. D., Debrunner P. G., Gunsalus I. C., Biochem. Biophys. Res. Commun. 61, 290 (1974);

Brewer C. B., Peterson J. A., Arch. Biochem. Biophys. 249, 515 (1986).

Stoddard B. L., Pharmacol. Ther. 70, 215 (1996).

Schlichting I., Goody R. S., Methods Enzymol. 277, 467 (1997).

Ringe D., et al., Philos. Trans. R. Soc. London Ser. A 340, 243 (1992).

Hajdu J., Anderson I., Annu. Rev. Biophys. Biomol. Struct. 22, 467 (1993).

Petsko G. A., Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci. 340, 323 (1992).

Lipscomb J. D., Sligar S. G., Namtvedt M. J., Gunsalus I. C., J. Biol. Chem. 251, 1116 (1976).

Chance B., Angiolillo P., Yang E. K., Powers L., FEBS Lett. 112, 178 (1980);

De Witt J. G., et al., J. Am. Chem. Soc. 113, 9219 (1991);

Watanabe R., Usami N., Kobayashi K., Int. J. Radiat. Biol. 68, 113 (1995);

Lindquist Y., Huang W. J., Schneider G., Shanklin J., EMBO J. 15, 4081 (1996);

Erikson M., Jordan A., Eklund H., Biochemistry 37, 13349 (1998);

Stadtman E. R., Annu. Rev. Biochem. 62, 797 (1993).

Kobayashi K., et al., Biochim. Biophys. Acta 1037, 297 (1990);

Davydov R., et al., FEBS Lett. 295, 113 (1991).

Sharrock M., et al., Biochim. Biophys. Acta 420, 8 (1976);

Honeychurch M. J., Hill A. O., Wong L. L., FEBS Lett. 451, 351 (1999).

Contzen J., Jung C., Biochemistry 38, 16253 (1999).

Dawson J. H., et al., J. Am. Chem. Soc. 108, 8114 (1986);

Harris D., Loew G., Waskell L., J. Am. Chem. Soc. 120, 4308 (1998).

10.1016/S0969-2126(00)00021-6

Edwards S. L., Nguyen H. X., Hamlin R. C., Kraut J., Biochemistry 26, 1503 (1987);

Gouet P., et al., Nature Struct. Biol. 3, 951 (1996).

Groves J. T., McClusky G. A., Biochem. Biophys. Res. Commun. 81, 154 (1978);

Groves J. T., Subramanian D. V., J. Am. Chem. Soc. 106, 2177 (1984).

10.1021/ja00128a019

I. Schlichting et al. data not shown.

Vidakovic M., Sligar S. G., Li H., Poulos T. L., Biochemistry 37, 9211 (1998).

H. Shimada R. Makino M. Unno T. Horiuchi Y. Ishimura in Cytochrome P450. 8th International Conference M. C. Lechner and J. Libbey Eds. (Eurotext Paris 1994) pp. 299–306.

Gerber N. C., Sligar S. G., J. Biol. Chem. 269, 4260 (1994);

Aikens J., Sligar S. G., J. Am. Chem. Soc. 116, 1143 (1994);

Martinis S. A., Atkins W. M., Stayton P. S., Sligar S. G., J. Am. Chem. Soc. 111, 9252 (1989).

Loida P. J., Sligar S. G., Biochemistry 32, 11530 (1993).

Harris D. L., Loew G. H., J. Am. Chem. Soc. 118, 6377 (1996).

Benson D. E., Suslick K. S., Sligar S. G., Biochemistry 36, 5104 (1997).

Kimata Y., Tsukada S., Iwamoto T., Harii K., Biochem. Biophys. Res. Commun. 208, 96 (1995).

Raag R., Martinis S. A., Sligar S. G., Poulos T. L., Biochemistry 30, 11420 (1991).

M. Newcomb et al. J. Am. Chem. Soc. in press.

Esnouf R. M., J. Mol. Graphics 15, 133 (1997).

Meritt E. A., Murphy M. E. P., Acta Crystallogr. Sect. D 50, 869 (1994).

Gerber N. C., Sligar S. G., J. Am. Chem. Soc. 114, 8742 (1992).

Poulos T. L., Perez M., Wagner G. C., J. Biol. Chem. 257, 10427 (1982).

Kabsch W., J. Appl. Crystallogr. 26, 795 (1993).

Navaza J., Acta Crystallogr. Sect. A 50, 157 (1994).

A. T. Brünger X-PLOR: A System for Crystallography and NMR version 3.1 (Yale Univ. Press New Haven CT 1992).

Brünger A. T., et al., Acta Crystallogr. Sect. D 54, 905 (1998).

10.1107/S0108767390010224

The literature of cytochrome P450 is so vast and so many people have made important contributions that it is impossible in the space allowed to give even a representative set of references. We have tried to cite review articles whenever possible to provide links to the original papers. We apologize to those we have been unable to include. We gratefully acknowledge G. Holtermann for designing the pressure cell; M. Davies N. C. Gerber E. J. Mueller and M. Vidakovic for supplying us with protein; C. Jung G. Rosenbaum and K. Scheffzek for discussions; and R. S. Goody K. C. Holmes and W. Kabsch for continuous support and encouragement. P. Ortiz de Montellano and J. A. Peterson provided useful advice. The referees made a number of very helpful suggestions that greatly improved the manuscript. We thank the Alexander von Humboldt Stiftung the Human Frontiers Science Project and the Richard und Anne Liese Leyendecker Stiftung for generous support and acknowledge the European Community biotech grant BIO2-CT942060 to I.S. NIH grants GM31756 and GM33775 to S.G.S and GM26788 to G.A.P. and D.R. Beamline X12C is supported by the U.S. Department of Energy Offices of Health and Environmental Research and of Basic Energy Sciences NIH and NSF. The coordinates have been submitted to the PDB: 1d26 1d24 1d28 and 1d29 for the ferric reduced oxy and oxyferryl complex respectively.