The Calcium Channel Mucolipin‐3 is a Novel Regulator of Trafficking Along the Endosomal Pathway

Traffic - Tập 10 Số 8 - Trang 1143-1156 - 2009
José A. Martina1, Benjamin Lelouvier1, Rosa Puertollano1
1Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA

Tóm tắt

The varitint‐waddler phenotype in mice is caused by gain‐of‐function mutations in mucolipin‐3 (MCOLN3), a member of the mucolipin family of ion channels. These mice are characterized by defects in pigmentation, hearing loss and vestibular defects, suggesting that MCOLN3 might play a role in melanosome trafficking and hair cell maturation. Recent evidence has shown that MCOLN3 is a Ca2+–permeable channel and its activity is regulated by pH. Here we show that MCOLN3 primarily localizes to early and late endosomes in human epithelial cells. This distribution at the less acidic portions of the endocytic pathway is consistent with the reported inactivation of the channel by low pH. Furthermore, overexpression of MCOLN3 causes dramatic alterations in the endosomal pathway, including enlargement of Hrs‐positive endosomes, delayed degradation of epidermal growth factor (EGF) and EGF receptor (EGFR) and defective autophagosome maturation, whereas depletion of endogenous MCOLN3 enhances EGFR degradation. Finally, we found that endosomal pH is higher in cells overexpressing MCOLN3 and propose a model in which Ca2+ release from endosomes mediated by MCOLN3 might be important for efficient endosomal acidification. Therefore, MCOLN3 is a novel Ca2+ channel that plays a crucial role in the regulation of cargo trafficking along the endosomal pathway.

Từ khóa


Tài liệu tham khảo

Amir N, 1987, Mucolipidosis type IV: clinical spectrum and natural history, Pediatrics, 79, 953, 10.1542/peds.79.6.953

10.1006/mgme.2001.3195

10.1212/WNL.59.3.306

10.1111/j.1600-0854.2006.00387.x

10.1074/jbc.M600807200

10.1111/j.1600-0854.2006.00475.x

10.1074/jbc.M511104200

10.1186/1471-2121-8-54

10.1016/S0014-5793(02)03670-0

10.1007/s00424-005-1448-9

10.1074/jbc.M508210200

10.1038/nature07311

10.1042/BJ20070713

10.1093/hmg/ddh067

10.1074/jbc.M508211200

10.1073/pnas.0400709101

10.1016/j.tcb.2004.07.010

10.1084/jem.20072194

10.1093/hmg/ddn174

10.1016/j.ymgme.2006.05.016

10.1111/j.0105-2896.2005.00225.x

10.1016/j.ejcb.2006.08.004

10.1111/j.1600-0854.2007.00619.x

10.1007/BF00402533

10.1016/S0378-5955(98)00107-5

10.1073/pnas.222425399

10.1007/s10162-002-3011-0

10.1016/j.bbadis.2007.01.007

10.1007/s00424-008-0523-4

10.1074/jbc.C700190200

10.1073/pnas.0707963105

10.1038/emboj.2008.56

10.1073/pnas.0709846104

10.1073/pnas.0709096104

10.1006/exer.1996.0020

10.1023/A:1011060705599

Busik JV, 2002, Glucose‐induced activation of glucose uptake in cells from the inner and outer blood–retinal barrier, Invest Ophthalmol Vis Sci, 43, 2356

10.1016/S0092-8674(02)00966-2

10.1016/S0955-0674(99)80024-6

10.1093/hmg/ddm100

10.1083/jcb.200702115

10.1093/hmg/ddm289

10.1007/978-1-4613-0335-0_12

10.1038/35056522

10.1038/sj.cdd.4401765

10.1083/jcb.111.2.329

Punnonen EL, 1993, Autophagic vacuoles fuse with the prelysosomal compartment in cultured rat fibroblasts, Eur J Cell Biol, 61, 54

10.1083/jcb.136.1.61

10.1074/jbc.273.34.21883

10.1016/0006-291X(88)90556-6

10.1016/S0960-9822(07)00565-9

10.1016/S0091-679X(03)72019-6

10.1152/physiol.00005.2004

10.1073/pnas.0932599100

10.1016/j.cub.2007.09.032

10.1083/jcb.200112080

10.1016/j.bbrc.2007.06.105

10.1091/mbc.10.9.3035

10.1074/jbc.M400093200

10.1083/jcb.149.5.1053

10.1091/mbc.11.12.4105