The Beneficial Effects of Physical Activity: Is It Down to Your Genes? A Systematic Review and Meta-Analysis of Twin and Family Studies
Tóm tắt
There is evidence for considerable heterogeneity in the responsiveness to regular physical activity (PA) which might reflect the influence of genetic factors. The aim of this systematic review was to assess whether the response to a PA intervention for measures of body composition and cardiorespiratory fitness is (i) correlated within twin pairs and/or families and (ii) more correlated in monozygotic twins (MZ) compared to dizygotic twins (DZ), which would be consistent with genetic effects. We performed electronic database searches, combining key words relating to “physical activity” and “genetics”, in MEDLINE, CINAHL, EMBASE, SPORTS Discuss, AMED, PsycINFO, WEB OF SCIENCE, and SCOPUS from the earliest records to March 2016. Twin and family studies were included if they assessed body composition and/or cardiorespiratory fitness following a PA intervention, and provided a heritability estimate, maximal heritability estimate, or within MZ twin pair correlation (rMZ). Data on heritability (twin studies), maximal heritability (family studies), and the rMZ were extracted from included studies, although heritability estimates were not reported as small sample sizes made them uninformative. After screening 224 full texts, nine twin and five family studies were included in this review. The pooled rMZ in response to PA was significant for body mass index (rMZ = 0.69, n = 58), fat mass (rMZ = 0.58, n = 48), body fat percentage (rMZ = 0.55, n = 72), waist circumference (rMZ = 0.50, n = 27), and VO2max (rMZ = 0.39, n = 48), where “n” represents the total number of twin pairs from all studies. Maximal heritability estimates ranged from 0–21% for measures of body composition, and 22–57% for cardiorespiratory fitness. Twin studies differed in sample age, baseline values, and PA intervention, although the exclusion of any one study did not affect the results. Shared familial factors, including genetics, are likely to be a significant contributor to the response of body composition and cardiorespiratory fitness following PA. Genetic factors may explain individual variation in the response to PA. PROSPERO Registration No
CRD42015020056
.
Tài liệu tham khảo
Vogel T, Brechat PH, Leprêtre PM, et al. Health benefits of physical activity in older patients: a review. Int J Clin Pract. 2009;63:303–20.
Sherrington C, Whitney JC, Lord SR, et al. Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc. 2008;56:2234–43.
Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.
Nelson ME, Rejeski WJ, Blair SN, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1435–45.
Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116:682–92.
Nikander R, Sievanen H, Heinonen A, et al. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47.
Metsios GS, Stavropoulos-Kalinoglou A, Veldhuijzen van Zanten JJCS, et al. Rheumatoid arthritis, cardiovascular disease and physical exercise: a systematic review. Rheumatol. 2008;47:239–48.
Herring MP, O’Connor PJ, Dishman RK. The effect of exercise training on anxiety symptoms among patients: a systematic review. Arch Intern Med. 2010;170:321–31.
Heneweer H, Staes F, Aufdemkampe G, et al. Physical activity and low back pain: a systematic review of recent literature. Eur Spine J. 2011;20:826–45.
Goodpaster BH, Delany JP, Otto AD, et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA. 2010;304:1795–802.
Wei M, Kampert JB, Barlow CE, et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA. 1999;282:1547–53.
Sui X, Li H, Zhang J, et al. Percentage of deaths attributable to poor cardiovascular health lifestyle factors: findings from the Aerobics Center Longitudinal Study. Epidemiol Res Int. 2013;2013:9.
Flegal KM, Kit BK, Orpana H, et al. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.
Flegal KM, Graubard BI, Williamson DF, et al. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA. 2007;298:2028–37.
De Vilhena e Santos DM, Katzmarzyk PT, Seabra AF, et al. Genetics of physical activity and physical inactivity in humans. Behav Genet. 2012;42:559–78.
den Hoed M, Brage S, Zhao JH, et al. Heritability of objectively assessed daily physical activity and sedentary behavior. Am J Clin Nutr. 2013;98:1317–25.
Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446-51. discussion S52-3.
Lortie G, Simoneau JA, Hamel P, et al. Responses of maximal aerobic power and capacity to aerobic training. Int J Sports Med. 1984;5:232–6.
Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE family study. J Appl Physiol. 1999;87:1003–8.
Koenigstorfer J, Schmidt WFJ. Effects of exercise training and a hypocaloric diet on female monozygotic twins in free-living conditions. Physiol Behav. 2011;104:838–44.
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9, w64.
Bouchard C, Perusse L, Leblanc C. Using MZ twins in experimental research to test for the presence of a genotype-environment interaction effect. Acta Genet Med Gemellol. 1990;39:85–9.
Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys Ther. 2003;83:713–21.
Perusse L, Rice T, Province MA, et al. Familial aggregation of amount and distribution of subcutaneous fat and their responses to exercise training in the HERITAGE family study. Obes Res. 2000;8:140–50.
Haggard E. Intraclass correlation and the analysis of variance. New York: Dryden Press; 1958. p. 171.
Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.
Danis A, Kyriazis Y, Klissouras V. The effect of training in male prepubertal and pubertal monozygotic twins. Eur J Appl Physiol. 2003;89:309–18.
Hainer V, Stunkard AJ, Kunesova M, et al. Intrapair resemblance in very low calorie diet-induced weight loss in female obese identical twins. Int J Obes Relat Metab Disord. 2000;24:1051–7.
Afman G, Adams T, Fisher G, et al. Influence of genetics and exercise training on the heart: a 22-week study of monozygous and dizygous twins [Manuscript of a Journal Article]: Brigham Young University. 1988.
Bouchard C, Tremblay A, Despres JP, et al. The response to exercise with constant energy intake in identical twins. Obes Res. 1994;2:400–10.
Skinner JS, Wilmore KM, Krasnoff JB, et al. Adaptation to a standardized training program and changes in fitness in a large, heterogeneous population: the HERITAGE Family Study. Med Sci Sports Exerc. 2000;32:157–61.
Hopkins ND, Stratton G, Cable NT, et al. Impact of exercise training on endothelial function and body composition in young people: a study of mono- and di-zygotic twins. Eur J Appl Physiol. 2012;112:421–7.
Poehlman ET, Tremblay A, Marcotte M, et al. Heredity and changes in body composition and adipose tissue metabolism after short-term exercise-training. Eur J Appl Physiol Occup Physiol. 1987;56:398–402.
Hamel P, Simoneau J, Lortie G, et al. Heredity and muscle adaption to endurance training. Med Sci Sports Exerc. 1986;18:690–6.
Prud’Homme D, Bouchard C, Leblanc C. Sensitivity of maximal aerobic power to training is genotype-dependent. Med Sci Sports Exerc. 1984;16:489–93.
Rice T, Hong Y, Perusse L, et al. Total body fat and abdominal visceral fat response to exercise training in the HERITAGE Family Study: Evidence for major locus but no multifactorial effects. Metab Clin Exp. 1999;48:1278–86.
Gaskill SE, Rice T, Bouchard C, et al. Familial resemblance in ventilatory threshold: The HERITAGE Family Study. Med Sci Sports Exerc. 2001;33:1832–40.
Perusse L, Gagnon J, Province MA, et al. Familial aggregation of submaximal aerobic performance in the heritage family study. Med Sci Sports Exerc. 2001;33:597–604.
Elks CE, den Hoed M, Zhao JH, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol. 2012;3:29.
Hocking LJ, Morris AD, Dominiczak AF, et al. Heritability of chronic pain in 2195 extended families. Eur J Pain. 2012;16:1053–63.
Mustelin L, Latvala A, Pietilainen KH, et al. Associations between sports participation, cardiorespiratory fitness, and adiposity in young adult twins. J App Physiol (Bethesda, Md : 1985). 2011;110:681–6.
Schousboe K, Visscher PM, Erbas B, et al. Twin study of genetic and environmental influences on adult body size, shape, and composition. Int J Obes Relat Metab Disord. 2004;28:39–48.
Poulsen P, Vaag A, Kyvik K, et al. Genetic versus environmental aetiology of the metabolic syndrome among male and female twins. Diabetologia. 2001;44:537–43.
Zillikens MC, Yazdanpanah M, Pardo LM, et al. Sex-specific genetic effects influence variation in body composition. Diabetologia. 2008;51:2233–41.
Korkeila M, Kaprio J, Rissanen A, et al. Effects of gender and age on the heritability of body mass index. Int J Obes. 1991;15:647–54.
Schousboe K, Willemsen G, Kyvik KO, et al. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res. 2003;6:409–21.
Korkeila M, Kaprio J, Rissanen A, et al. Consistency and change of body mass index and weight. A study on 5967 adult Finnish twin pairs. Int J Obes Relat Metab Disord. 1995;19:310–7.
Bouchard C, Lesage R, Lortie G. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc. 1986;18:639–46.
Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30:252–8.
Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997;27:325–51.
Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 9: Analysing data and undertaking meta-analyses. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org.
Hopper JL. Variance components for statistical genetics: applications in medical research to characteristics related to human diseases and health. Stat Methods Med Res. 1993;2:199–223.
Hopper JL. Why ‘common environmental effects’ are so uncommon in the literature In: Spector T, Snieder H, MacGregor AJ, editors. Advances in Twin and Sib-pair Analysis 137 Euston Rd, London, NW1, 2AA: Greewich Medical Media Ltd.; 2000. p. 151–66.
Bouchard C, Sarzynski MA, Rice TK, et al. Genomic predictors of the maximal O(2) uptake response to standardized exercise training programs. J Appl Physiol (1985). 2011;110:1160–70.
Rankinen T, Argyropoulos G, Rice T, et al. CREB1 is a strong genetic predictor of the variation in exercise heart rate response to regular exercise: the HERITAGE Family Study. Circ Cardiovasc Genet. 2010;3:294–9.
Chagnon YC, Rice T, Perusse L, et al. Genomic scan for genes affecting body composition before and after training in Caucasians from HERITAGE. J Appl Physiol (1985). 2001;90:1777–87.
Sun G, Gagnon J, Chagnon YC, et al. Association and linkage between an insulin-like growth factor-1 gene polymorphism and fat free mass in the HERITAGE Family Study. Int J Obes Relat Metab Disord. 1999;23:929–35.
Haimoto H, Hosoda S, Kato K. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest. 1987;57:489–98.
Bouchard C, Antunes-Correa LM, Ashley EA, et al. Personalized preventive medicine: genetics and the response to regular exercise in preventive interventions. Prog Cardiovasc Dis. 2015;57:337–46.
Kitsios G, Zintzaras E. Genomic convergence of genome-wide investigations for complex traits. Ann Hum Genet. 2009;73:514–9.