The BTB/POZ zinc finger protein Broad-Z3 promotes dendritic outgrowth during metamorphic remodeling of the peripheral stretch receptor dbd
Tóm tắt
Various members of the family of BTB/POZ zinc-finger transcription factors influence patterns of dendritic branching. One such member, Broad, is notable because its BrZ3 isoform is widely expressed in Drosophila in immature neurons around the time of arbor outgrowth. We used the metamorphic remodeling of an identified sensory neuron, the dorsal bipolar dendrite sensory neuron (dbd), to examine the effects of BrZ3 expression on the extent and pattern of dendrite growth during metamorphosis. Using live imaging of dbd in Drosophila pupae, we followed its normal development during metamorphosis and the effect of ectopic expression of BrZ3 on this development. After migration of its cell body, dbd extends a growth-cone that grows between two muscle bands followed by branching and turning back on itself to form a compact dendritic bundle. The ectopic expression of the BrZ3 isoform, using the GAL4/UAS system, caused dbd's dendritic tree to transform from its normal, compact, fasciculated form into a comb-like arbor that spread over on the body wall. Time-lapse analysis revealed that the expression of BrZ3 caused the premature extension of the primary dendrite onto immature myoblasts, ectopic growth past the muscle target region, and subsequent elaboration onto the epidermis. To control the timing of expression of BrZ3, we used a temperature-sensitive GAL80 mutant. When BrZ3 expression was delayed until after the extension of the primary dendrite, then a normal arbor was formed. By contrast, when BrZ3 expression was confined to only the early outgrowth phase, then ectopic arbors were subsequently formed and maintained on the epidermis despite the subsequent absence of BrZ3. The adult arbor of dbd is a highly branched arbor whose branches self-fasciculate to form a compact dendritic bundle. The ectopic expression of BrZ3 in this cell causes a premature extension of its growth-cone, resulting in dendrites that extend beyond their normal muscle substrate and onto the epidermis, where they form a comb-shaped, ectopic arbor. Our quantitative data suggest that new ectopic arbor represents an 'unpacking' of the normally fasciculated arbor onto the epidermis. These data suggest that the nature of their local environment can change dendrite behavior from self-adhesion to self-avoidance.
Tài liệu tham khảo
Mumm JS, Williams PR, Godinho L, Koerber A, Pittman AJ, Roeser T, Chien CB, Baier H, Wong RO: In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron. 2006, 52: 609-621. 10.1016/j.neuron.2006.10.004.
Niell CM, Meyer MP, Smith SJ: In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci. 2004, 7: 254-260. 10.1038/nn1191.
Williams DW, Truman JW: Mechanisms of dendritic elaboration of sensory neurons in Drosophila: insights from in vivo time lapse. J Neurosci. 2004, 24: 1541-1550. 10.1523/JNEUROSCI.4521-03.2004.
Wu GY, Zou DJ, Rajan I, Cline H: Dendritic dynamics in vivo change during neuronal maturation. J Neurosci. 1999, 19: 4472-4483.
Parrish JZ, Emoto K, Kim MD, Jan YN: Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci. 2007, 30: 399-423. 10.1146/annurev.neuro.29.051605.112907.
Gao FB, Brenman JE, Jan LY, Jan YN: Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 1999, 13: 2549-2561. 10.1101/gad.13.19.2549.
Grueber WB, Jan LY, Jan YN: Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development. 2002, 129: 2867-2878.
Shimono K, Fujimoto A, Tsuyama T, Yamamoto-Kochi M, Sato M, Hattori Y, Sugimura K, Usui T, Kimura K, Uemura T: Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death. Neural Dev. 2009, 4: 37-10.1186/1749-8104-4-37.
Williams DW, Shepherd D: Persistent larval sensory neurons in adult Drosophila melanogaster. J Neurobiol. 1999, 39: 275-286. 10.1002/(SICI)1097-4695(199905)39:2<275::AID-NEU11>3.0.CO;2-0.
Schrader S, Merritt DJ: Dorsal longitudinal stretch receptor of Drosophila melanogaster larva - fine structure and maturation. Arthropod Struct Dev. 2007, 36: 157-169. 10.1016/j.asd.2006.08.014.
Brewster R, Bodmer R: Origin and specification of type II sensory neurons in Drosophila. Development. 1995, 121: 2923-2936.
Brewster R, Hardiman K, Deo M, Khan S, Bodmer R: The selector gene cut represses a neural cell fate that is specified independently of the Achaete-Scute-Complex and atonal. Mech Dev. 2001, 105: 57-68. 10.1016/S0925-4773(01)00375-6.
Umesono Y, Hiromi Y, Hotta Y: Context-dependent utilization of Notch activity in Drosophila glial determination. Development. 2002, 129: 2391-2399.
Williams DW, Truman JW: Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development. 2005, 132: 3631-3642. 10.1242/dev.01928.
Gonzy G, Pokholkova GV, Peronnet F, Mugat B, Demakova OV, Kotlikova IV, Lepesant JA, Zhimulev IF: Isolation and characterization of novel mutations of the Broad-Complex, a key regulatory gene of ecdysone induction in Drosophila melanogaster. Insect Biochem Mol Biol. 2002, 32: 121-132. 10.1016/S0965-1748(01)00097-2.
Mugat B, Brodu V, Kejzlarova-Lepesant J, Antoniewski C, Bayer CA, Fristrom JW, Lepesant JA: Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Dev Biol. 2000, 227: 104-117. 10.1006/dbio.2000.9879.
von Kalm L, Crossgrove K, Von Seggern D, Guild GM, Beckendorf SK: The Broad-Complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. EMBO J. 1994, 13: 3505-3516.
Bayer CA, von Kalm L, Fristrom JW: Relationships between protein isoforms and genetic functions demonstrate functional redundancy at the Broad-Complex during Drosophila metamorphosis. Dev Biol. 1997, 187: 267-282. 10.1006/dbio.1997.8620.
Restifo LL, White K: Mutations in a steroid hormone-regulated gene disrupt the metamorphosis of the central nervous system in Drosophila. Dev Biol. 1991, 148: 174-194. 10.1016/0012-1606(91)90328-Z.
Emery IF, Bedian V, Guild GM: Differential expression of Broad-Complex transcription factors may forecast tissue-specific developmental fates during Drosophila metamorphosis. Development. 1994, 120: 3275-3287.
Restifo LL, Hauglum W: Parallel molecular genetic pathways operate during CNS metamorphosis in Drosophila. Mol Cell Neurosci. 1998, 11: 134-148. 10.1006/mcne.1998.0683.
Zhou B, Williams DW, Altman J, Riddiford LM, Truman JW: Temporal patterns of broad isoform expression during the development of neuronal lineages in Drosophila. Neural Dev. 2009, 4: 39-10.1186/1749-8104-4-39.
Maurange C, Cheng L, Gould AP: Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell. 2008, 133: 891-902. 10.1016/j.cell.2008.03.034.
Zhou X, Riddiford LM: Broad specifies pupal development and mediates the 'status quo' action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development. 2002, 129: 2259-2269.
Hartenstein V: The muscle pattern of Drosophila. Muscle Development in Drosophila. Edited by: Helen Sink. 2006, Landes Bioscience, Springer, 8-28.
Currie DA, Bate M: The development of adult abdominal muscles in Drosophila: myoblasts express twist and are associated with nerves. Development. 1991, 113: 91-102.
Shepherd D, Smith SA: Central projections of persistent larval sensory neurons prefigure adult sensory pathways in the CNS of Drosophila. Development. 1996, 122: 2375-2384.
Hummel T, Krukkert K, Roos J, Davis G, Klämbt C: Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron. 2000, 26: 357-370. 10.1016/S0896-6273(00)81169-1.
Yasunaga K, Kanamori T, Morikawa R, Suzuki E, Emoto K: Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Dev Cell. 2010, 18: 621-632. 10.1016/j.devcel.2010.02.010.
Dutta D, Anant S, Ruiz-Gomez M, Bate M, VijayRaghavan K: Founder myoblasts and fibre number during adult myogenesis in Drosophila. Development. 2004, 131: 3761-3772. 10.1242/dev.01249.
Hughes CL, Thomas JB: A sensory feedback circuit coordinates muscle activity in Drosophila. Mol Cell Neurosci. 2007, 35: 383-396. 10.1016/j.mcn.2007.04.001.
Song W, Onishi M, Jan LY, Jan YN: Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae. Proc Natl Acad Sci USA. 2007, 12: 5199-5204.
Martin V, Mrkusich E, Steinel MC, Rice J, Merritt DJ, Whitington PM: The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo. Neural Dev. 2008, 3: 10-10.1186/1749-8104-3-10.
Parrish JZ, Kim MD, Jan LY, Jan YN: Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev. 2006, 20: 820-835. 10.1101/gad.1391006.
Li W, Wang F, Menut L, Gao FB: BTB/POZ-zinc finger protein abrupt suppresses dendritic branching in a neuronal subtype-specific and dosage-dependent manner. Neuron. 2004, 43: 823-834. 10.1016/j.neuron.2004.08.040.
Soba P, Zhu S, Emoto K, Younger S, Yang SJ, Yu HH, Lee T, Jan LY, Jan YN: Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron. 2007, 54: 403-416. 10.1016/j.neuron.2007.03.029.
Kimura K, Ote M, Tazawa T, Yamamoto D: Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature. 2005, 438: 229-233. 10.1038/nature04229.
Spletter ML, Liu J, Su H, Giniger E, Komiyama T, Quake S, Luo L: Lola regulates Drosophila olfactory projection neuron identity and targeting specificity. Neural Dev. 2007, 2: 14-10.1186/1749-8104-2-14.
Chen Y, Derin R, Petralia RS, Li M: Actinfilin, a brain-specific actin-binding protein in postsynaptic density. J Biol Chem. 2002, 277: 30495-30501. 10.1074/jbc.M202076200.
Korutla L, Wang P, Jackson TG, Mackler SA: NAC1, a POZ/BTB protein that functions as a corepressor. Neurochem Int. 2009, 54: 245-252. 10.1016/j.neuint.2008.12.008.
Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V: The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev Biol. 2002, 244: 170-179. 10.1006/dbio.2002.0594.
Caygill EE, Johnston LA: Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol. 2008, 18: 943-950. 10.1016/j.cub.2008.06.020.
Sokol NS, Xu P, Jan YN, Ambros V: Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 2008, 22: 1591-1596. 10.1101/gad.1671708.
Sugimura K, Satoh D, Estes P, Crews S, Uemura T: Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron. 2004, 43: 809-822. 10.1016/j.neuron.2004.08.016.
Consoulas C, Levine RB, Restifo LL: The steroid hormone-regulated gene Broad Complex is required for dendritic growth of motoneurons during metamorphosis of Drosophila. J Comp Neurol. 2005, 485: 321-337. 10.1002/cne.20499.
Zhou X, Zhou B, Truman JW, Riddiford LM: Overexpression of broad: a new insight into its role in the Drosophila prothoracic gland cells. J Exp Biol. 2004, 207: 1151-1161. 10.1242/jeb.00855.
McGuire S E, Le PT, Osborn AJ, Matsumoto K, Davis RL: Spatiotemporal rescue of memory dysfunction in Drosophila. Science. 2003, 302: 1765-1768. 10.1126/science.1089035.
Held LI: Sensitive periods for abnormal patterning on a leg segment in Drosophila melanogaster. Roux's Archiv Dev Biol. 1990, 199: 31-47. 10.1007/BF01681531.
Kiehart DP, Montague RA, Rickoll WL, Foard D, Thomas GH: High-resolution microscopic methods for the analysis of cellular movements in Drosophila embryos. Methods Cell Biol. 1994, 44: 507-532.
ImageJ. [http://rsb.info.nih.gov/ij/]