The Application of Optical Nondestructive Testing for Fresh Berry Fruits

Zhujun Chen1, Juan Wang1, Xuan Liu1, Yu‐Cheng Gu2, Z. Justin Ren1
1College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
2College of Life Sciences, Hebei Agricultural University, Baoding, 071001, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kumar S, Baghel M, Yadav A, Dhakar, MK (2018) Postharvest biology and technology of berries. Postharvest Biol Technol Temp Fruit 349–370.

Manganaris GA, Goulas V, Vicente AR, Terry LA (2014) Berry antioxidants: small fruits providing large benefits. J Sci Food Agric 94(5):825–833. https://doi.org/10.1002/jsfa.6432

Salo HM, Nguyen N, Alakärppä E, Klavins L, Hykkerud AL, Karppinen K, Jaakola L, Klavins M, Häggman H (2021) Authentication of berries and berry-based food products. Compr Rev Food Sci Food Saf 20(5):5197–5225. https://doi.org/10.1111/1541-4337.12811

Miller K, Feucht W, Schmid M (2019) Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: a brief overview. Nutrients 11(7):1510. https://doi.org/10.3390/nu11071510

Golovinskaia O, Wang C (2021) Review of functional and pharmacological activities of berries. Molecules 26(13):3904. https://doi.org/10.3390/molecules26133904

Neri-Numa IA, Soriano Sancho RA, Pereira APA, Pastore GM (2018) Small brazilian wild fruits: nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int 103:345–360. https://doi.org/10.1016/j.foodres.2017.10.053

Tourte L, Bolda M, Klonsky K (2016) The evolving fresh market berry industry in Santa Cruz and Monterey counties. Calif Agric (Berkeley, Calif.) 70(3):107–115. https://doi.org/10.3733/ca.2016a0001

Jingbo P (2007) Develop small berry industry and open up international market. North Fruit Tree (03):77–78. https://doi.org/10.3969/j.issn.1001-5698.2007.03.047

Lan C (2003) Small berries will become a new economic growth point. Yunnan Agric (04):37. CNKI:SUN:YNNY.0.2003–04–048

Miina J, Pukkala T, Kurttila M (2016) Optimal multi-product management of stands producing timber and wild berries. Eur J Forest Res 135(4):781–794. https://doi.org/10.1007/s10342-016-0972-9

Doerflinger FC, Pagay V (2018) Objective assessment of dried sultana grape quality using digital image analysis. Aust J Grape Wine Res 24(2):234–240. https://doi.org/10.1111/ajgw.12316

Liu X, Wang H, Huang X, Guo M, Yang Z, Zhang K, Liu J, Wang M, Gong Y, Wei J, Di D (2020) Quality assessment and classification of goji berry by an hplc-based analytical platform coupled with multivariate statistical analysis. Food Anal Methods 13(12):2222–2237. https://doi.org/10.1007/s12161-020-01827-y

Xisheng T (2015) Study on quality detection and grading of blueberry based on machine vision and visible/near infrared spectroscopy. Master degree Thesis

Pathmanaban P, Gnanavel BK, Shanmuga SA (2019) Recent application of imaging techniques for fruit quality assessment. Trends Food Sci Technol 94

El-Mesery H, Mao H, Abomohra A (2019) Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors 19(4):846. https://doi.org/10.3390/s19040846

Magwaza LS, Ford HD, Cronje PJR, Opara UL, Landahl S, Tatam RP, Terry LA (2013) Application of optical coherence tomography to non-destructively characterise rind breakdown disorder of ‘nules clementine’ mandarins. Postharvest Biol Technol 84:16–21. https://doi.org/10.1016/j.postharvbio.2013.03.019

Fei X (2013) Key technologies and applications of automatic optical inspection based on computer vision. Doctorate Thesis, Nanjing University

Li L, Chen S, Deng M, Gao Z (2022) Optical techniques in non-destructive detection of wheat quality: a review. Grain Oil Sci Technol 5(1):44–57. https://doi.org/10.1016/j.gaost.2021.12.001

Baxes GA (1994) Digital image processing: principles and applications. Wiley, New York, p 452

Xuejun Z, Shenming G, Bin L (2019) Application of machine vision technology in agricultural production. Rural Econ Technol 30(23):55–56. CNKI:SUN:NCJI.0.2019–23–026

Hemamalini V, Rajarajeswari S, Nachiyappan S, Sambath M, Devi T, Singh BK, Raghuvanshi A (2022) Food quality inspection and grading using efficient image segmentation and machine learning-based system. J Food Qual 2022:1–6. https://doi.org/10.1155/2022/5262294

Kumar RA, Rajpurohit VS, Gaikwad N (2021) Image dataset of pomegranate fruits (Punica granatum) for various machine vision applications. Data Br 37:107249. https://doi.org/10.1016/j.dib.2021.107249

Nithya R, Santhi B, Manikandan R, Rahimi M, Gandomi AH (2022) Computer vision system for mango fruit defect detection using deep convolutional neural network. Foods 11(21):3483. https://doi.org/10.3390/foods11213483

Mavridou E, Vrochidou E, Papakostas GA, Pachidis T, Kaburlasos VG (2019) Machine vision systems in precision agriculture for crop farming. J Imaging 5(12):89. https://doi.org/10.3390/jimaging5120089

Häni N, Roy P, Isler V (2020) A comparative study of fruit detection and counting methods for yield mapping in apple orchards. J Field Robot 37(2):263–282. https://doi.org/10.1002/rob.21902

Tang Y, Chen M, Wang C, Luo L, Li J, Lian G, Zou X (2020) Recognition and localization methods for vision-based fruit picking robots: a review. Front Plant Sci 11:510. https://doi.org/10.3389/fpls.2020.00510

Maheswari P, Raja P, Apolo-Apolo OE, Pérez-Ruiz M (2021) Intelligent fruit yield estimation for orchards using deep learning based semantic segmentation techniques—a review. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.684328

Pérez-Borrero I, Marín-Santos D, Gegúndez-Arias ME, Cortés-Ancos E (2020) A fast and accurate deep learning method for strawberry instance segmentation. Comput Electron Agric 178:105736. https://doi.org/10.1016/j.compag.2020.105736

Gonzalez S, Arellano C, Tapia JE (2019) Deepblueberry: quantification of blueberries in the wild using instance segmentation. IEEE Access 7:105776–105788. https://doi.org/10.1109/ACCESS.2019.2933062

Ni X, Li C, Jiang H, Takeda F (2020) Deep learning image segmentation and extraction of blueberry fruit traits associated with harvestability and yield. Hortic Res 7(1). https://doi.org/10.1038/s41438-020-0323-3

Palacios F, Diago MP, Melo-Pinto P, Tardaguila J (2023) Early yield prediction in different grapevine varieties using computer vision and machine learning. Precision Agric 24(2):407–435. https://doi.org/10.1007/s11119-022-09950-y

Bhatt D, Patel C, Talsania H, Patel J, Vaghela R, Pandya S, Modi K, Ghayvat H (2021) Cnn variants for computer vision: history, architecture, application, challenges and future scope. Electronics 10(20):2470. https://doi.org/10.3390/electronics10202470

Aquino A, Barrio I, Diago M, Millan B, Tardaguila J (2018) Vitisberry: an android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Comput Electron Agric 148:19–28. https://doi.org/10.1016/j.compag.2018.02.021

Chaudhury A, Ward C, Talasaz A, Ivanov AG, Brophy M, Grodzinski B, Huner NPA, Patel RV, Barron JL (2019) Machine vision system for 3d plant phenotyping. IEEE/ACM Trans Comput Biol Bioinf 16(6):2009–2022. https://doi.org/10.1109/TCBB.2018.2824814

Dorj U, Lee M, Yun S (2017) An yield estimation in citrus orchards via fruit detection and counting using image processing. Comput Electron Agric 140:103–112. https://doi.org/10.1016/j.compag.2017.05.019

Azarmdel H, Jahanbakhshi A, Mohtasebi SS, Muñoz AR (2020) Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (anns) and support vector machine (svm). Postharvest Biol Technol 166:111201. https://doi.org/10.1016/j.postharvbio.2020.111201

Li H, Lee WS, Wang K (2014) Identifying blueberry fruit of different growth stages using natural outdoor color images. Comput Electron Agric 106:91–101. https://doi.org/10.1016/j.compag.2014.05.015

Miraei Ashtiani S, Javanmardi S, Jahanbanifard M, Martynenko A, Verbeek FJ (2021) Detection of mulberry ripeness stages using deep learning models. IEEE Access 9:100380–100394. https://doi.org/10.1109/ACCESS.2021.3096550

Sun B, Chen H (2021) A survey of k nearest neighbor algorithms for solving the class imbalanced problem. Wirel Commun Mob Comput 2021

Deng X, Li Y, Weng J, Zhang J (2019) Feature selection for text classification: a review. Multimed Tools Appl 78(3):3797–3816. https://doi.org/10.1007/s11042-018-6083-5

Tan K, Lee WS, Gan H, Wang S (2018) Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes. Biosys Eng 176:59–72. https://doi.org/10.1016/j.biosystemseng.2018.08.011

Zhang Y, Lian J, Fan M, Zheng Y (2018) Deep indicator for fine-grained classification of banana’s ripening stages. Eurasip J Image Video Process 2018(1). https://doi.org/10.1186/s13640-018-0284-8

Rauf HT, Saleem BA, Lali MIU, Khan MA, Sharif M, Bukhari SAC (2019) A citrus fruits and leaves dataset for detection and classification of citrus diseases through machine learning. Data Br 26:104340. https://doi.org/10.1016/j.dib.2019.104340

Wang Q, Qi F, Sun M, Qu J, Xue J (2019) Identification of tomato disease types and detection of infected areas based on deep convolutional neural networks and object detection techniques. Comput Intell Neurosci 2019:1–15. https://doi.org/10.1155/2019/9142753

Kim B, Han Y, Park J, Lee J (2021) Improved vision-based detection of strawberry diseases using a deep neural network. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.559172

Xiao JR, Chung PC, Wu HY, Phan QH, Yeh JA, Hou MT (2020) Detection of strawberry diseases using a convolutional neural network. Plants (Basel) 10(1). https://doi.org/10.3390/plants10010031

Zheng C, Abd-Elrahman A, Whitaker V (2021) Remote sensing and machine learning in crop phenotyping and management, with an emphasis on applications in strawberry farming. Remote Sens 13(3):531. https://doi.org/10.3390/rs13030531

Albanese A, Nardello M, Brunelli D (2021) Automated pest detection with dnn on the edge for precision agriculture. IEEE J Emerg Sel Top Circuits Syst 11(3):458–467. https://doi.org/10.1109/JETCAS.2021.3101740

Iqbal Z, Khan MA, Sharif M, Shah JH, Ur Rehman MH, Javed K (2018) An automated detection and classification of citrus plant diseases using image processing techniques: a review. Comput Electron Agric 153:12–32. https://doi.org/10.1016/j.compag.2018.07.032

Cavallo DP, Cefola M, Pace B, Logrieco AF, Attolico G (2019) Non-destructive and contactless quality evaluation of table grapes by a computer vision system. Comput Electron Agric 156:558–564. https://doi.org/10.1016/j.compag.2018.12.019

Jia M, Li J, Hu T, Jiang Y, Luo J (2022) Feature normalization reweighting regression network for sugar content measurement of grapes. Appl Sci 12(15):7474. https://doi.org/10.3390/app12157474

Akiva P, Planche B, Roy A, Oudemans P, Dana K (2022) Vision on the bog: cranberry crop risk evaluation with deep learning. Comput Electron Agric 203:107444. https://doi.org/10.1016/j.compag.2022.107444

Kennison KR, Wilkinson KL, Pollnitz AP, Williams HG, Gibberd MR (2009) Effect of timing and duration of grapevine exposure to smoke on the composition and sensory properties of wine. Aust J Grape Wine Res 15(3):228–237. https://doi.org/10.1111/j.1755-0238.2009.00056.x

Kennison KR, Wilkinson KL, Pollnitz AP, Williams HG, Gibberd MR (2011) Effect of smoke application to field-grown merlot grapevines at key phenological growth stages on wine sensory and chemical properties. Aust J Grape Wine Res 17(2):S5–S12. https://doi.org/10.1111/j.1755-0238.2011.00137.x

Fuentes S, Tongson EJ, De Bei R, Gonzalez Viejo C, Ristic R, Tyerman S, Wilkinson K (2019) Non-invasive tools to detect smoke contamination in grapevine canopies, berries and wine: a remote sensing and machine learning modeling approach. Sensors 19(15):3335. https://doi.org/10.3390/s19153335

Duncan MA (2000) Frontiers in the spectroscopy of mass-selected molecular ions. Int J Mass Spectrom 200(1):545–569. https://doi.org/10.1016/S1387-3806(00)00366-3

Gómez AH, He Y, Pereira AG (2006) Non-destructive measurement of acidity, soluble solids and firmness of satsuma mandarin using vis/nir-spectroscopy techniques. J Food Eng 77(2):313–319. https://doi.org/10.1016/j.jfoodeng.2005.06.036

Walsh KB, Blasco J, Zude-Sasse M, Sun X (2020) Visible-nir ‘point’ spectroscopy in postharvest fruit and vegetable assessment: the science behind three decades of commercial use. Postharvest Biol Technol 168:111246. https://doi.org/10.1016/j.postharvbio.2020.111246

Bin L (2019) Application of infrared spectroscopy in food detection. Food Saf Guide (Z2):64–65. CNKI:SUN:SPAQ.0.2019-Z2–033

Cortés V, Blasco J, Aleixos N, Cubero S, Talens P (2019) Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: a review. Trends Food Sci Technol 85:138–148. https://doi.org/10.1016/j.tifs.2019.01.015

Jiajia M, Keqiang W (2021) Advances in optical nondestructive testing of fruit quality. Technol Food Ind 42(23):1–15. https://doi.org/10.13386/j.issn1002-0306.2020110235

Soriano-Disla JM, Janik LJ, Viscarra Rossel RA, Macdonald LM, McLaughlin MJ (2014) The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl Spectrosc Rev 49(2):139–186. https://doi.org/10.1080/05704928.2013.811081

Balan V, Mihai C, Cojocaru F, Uritu C, Dodi G, Botezat D, Gardikiotis I (2019) Vibrational spectroscopy fingerprinting in medicine: from molecular to clinical practice. Materials 12(18):2884. https://doi.org/10.3390/ma12182884

Ling S, Shao Z, Chen X (2014) Application of synchrotron ftir imaging for cells. Prog Chem (Beijing) 26(1):178–192. https://doi.org/10.7536/PC130662

Song Y, Cong Y, Wang B, Zhang N (2020) Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin Drug Deliv 17(4):551–571. https://doi.org/10.1080/17425247.2020.1737671

Bureau S, Cozzolino D, Clark CJ (2019) Contributions of Fourier-transform mid infrared (ft-mir) spectroscopy to the study of fruit and vegetables: a review. Postharvest Biol Technol 148:1–14. https://doi.org/10.1016/j.postharvbio.2018.10.003

Kim SW, Min SR, Kim J, Park SK, Kim TI, Liu JR (2009) Rapid discrimination of commercial strawberry cultivars using Fourier transform infrared spectroscopy data combined by multivariate analysis. Plant Biotechnol Rep 3(1):87–93. https://doi.org/10.1007/s11816-008-0078-z

Liu Y, Chen X, Ouyang A (2008) Nondestructive determination of pear internal quality indices by visible and near-infrared spectrometry. LWT Food Sci Technol 41(9):1720–1725. https://doi.org/10.1016/j.lwt.2007.10.017

Lu HS, Fu XP, Xie LJ, Ying YB (2007) Estimation of soluble solids content of intact citrus fruit by vis/nir spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 27(9):1727–1730

Li X, He Y, Fang H (2007) Non-destructive discrimination of Chinese bayberry varieties using vis/nir spectroscopy. J Food Eng 81(2):357–363. https://doi.org/10.1016/j.jfoodeng.2006.10.033

Kunihisa M, Fukino N, Matsumoto S (2003) Development of cleavage amplified polymorphic sequence (caps) markers for identification of strawberry cultivars. Euphytica 134(2):209–215. https://doi.org/10.1023/B:EUPH.0000003884.19248.33

Li Q, Yu X, Gao J (2017) A novel method to determine total sugar of goji berry using ft-nir spectroscopy with effective wavelength selection. Int J Food Prop 20(sup1):S478–S488. https://doi.org/10.1080/10942912.2017.1299759

Rong D, Wang H, Ying Y, Zhang Z, Zhang Y (2020) Peach variety detection using vis-nir spectroscopy and deep learning. Comput Electron Agric 175:105553. https://doi.org/10.1016/j.compag.2020.105553

Saura-Calixto F, Serrano J, Goñi I (2007) Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem 101(2):492–501. https://doi.org/10.1016/j.foodchem.2006.02.006

Luís Â, Duarte AP, Pereira L, Domingues F (2018) Interactions between the major bioactive polyphenols of berries: effects on antioxidant properties. Eur Food Res Technol 244(1):175–185. https://doi.org/10.1007/s00217-017-2948-5

Stefansson P, Liland KH, Thiis T, Burud I (2020) Fast method for ga‐pls with simultaneous feature selection and identification of optimal preprocessing technique for datasets with many observations. J Chemom 34(3). https://doi.org/10.1002/cem.3195

Arslan M, Xiaobo Z, Tahir HE, Xuetao H, Rakha A, Basheer S, Hao Z (2018) Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (lycium ruthenicum murr.). J Food Mea Charact 12(4):2366–2376. https://doi.org/10.1007/s11694-018-9853-x

Jasenka GK, Mariya G, Kiril M, Senka D, Ivana B, Ivana P, Želimir K (2016) Near-infrared spectroscopic analysis of total phenolic content and antioxidant activity of berry fruits. Food Technol Biotechnol 54(2)

Zheng W, Bai Y, Luo H, Li Y, Yang X, Zhang B (2020) Self-adaptive models for predicting soluble solid content of blueberries with biological variability by using near-infrared spectroscopy and chemometrics. Postharvest Biol Technol 169:111286. https://doi.org/10.1016/j.postharvbio.2020.111286

Zhang M, Li C, Yang F (2019) Optical properties of blueberry flesh and skin and Monte Carlo multi-layered simulation of light interaction with fruit tissues. Postharvest Biol Technol 150:28–41. https://doi.org/10.1016/j.postharvbio.2018.12.006

Hu M, Zhai G, Zhao Y, Wang Z (2018) Uses of selection strategies in both spectral and sample spaces for classifying hard and soft blueberry using near infrared data. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-25055-x

Yazici A, Tiryaki GY, Ayvaz H (2020) Determination of pesticide residual levels in strawberry (fragaria ) by near-infrared spectroscopy. J Sci Food Agric 100(5):1980–1989. https://doi.org/10.1002/jsfa.10211

Wang Z, Künnemeyer R, McGlone A, Burdon J (2020) Potential of vis-nir spectroscopy for detection of chilling injury in kiwifruit. Postharvest Biol Technol 164:111160. https://doi.org/10.1016/j.postharvbio.2020.111160

Hao M (2015) Application of spectral and hyperspectral imaging technology in crop characteristic information extraction. Doctor Thesis

Ben-Xue MA, Ying YB, Rao XQ (2009) Advance in nondestructive detection of fruit internal quality based on hyperspectral imaging. Spectros Spect Anal 6:5. https://doi.org/10.3964/j.issn.1000-0593(2009)06-1611-05

Feng YZ, Sun DW (2012) Application of hyperspectral imaging in food safety inspection and control: a review. Crit Rev Food Sci Nutr 52(11):1039–1058

Lorente D, Aleixos N, Gómez-Sanchis J, Cubero S, García-Navarrete OL, Blasco J (2012) Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol 5(4):1121–1142. https://doi.org/10.1007/s11947-011-0725-1

Lu Y, Huang Y, Lu R (2017) Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables: a review. Appl Sci 7(2):189. https://doi.org/10.3390/app7020189

Ben-Xue MA, Guo-Wei YU, Wen-Xia W, Xiu-Zhi L, Yu-Jie LI, Xiao-Zhan LI, Sheng-Yuan L (2020) Recent advances in spectral analysis techniques for non-destructive detection of internal quality in watermelon and muskmelon: a review. Spectrosc Spect Anal 40(7):2035–2041. https://doi.org/10.3964/j.issn.1000-0593(2020)07-2035-07

Zhao Y, Yu K, He Y (2015) Hyperspectral imaging coupled with random frog and calibration models for assessment of total soluble solids in mulberries. J Anal Methods Chem 2015:1–11. https://doi.org/10.1155/2015/343782

Huang L, Zhou Y, Meng L, Wu D, He Y (2017) Comparison of different ccd detectors and chemometrics for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near infrared hypers. Food Chem 224:1–10. https://doi.org/10.1016/j.foodchem.2016.12.037

Weng S, Yu S, Dong R, Pan F, Liang D (2020) Nondestructive detection of storage time of strawberries using visible/near-infrared hyperspectral imaging. Int J Food Prop 23(1):269–281. https://doi.org/10.1080/10942912.2020.1716793

Weng S, Yu S, Guo B, Tang P, Liang D (2020) Non-destructive detection of strawberry quality using multi-features of hyperspectral imaging and multivariate methods. Sensors 20(11):3074. https://doi.org/10.3390/s20113074

Zhang C, Wu W, Zhou L, Cheng H, Ye X, He Y (2020) Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum murr.) Using near-infrared hyperspectral imaging. Food Chem 319:126536. https://doi.org/10.1016/j.foodchem.2020.126536

Fatchurrahman D, Nosrati M, Amodio ML, Chaudhry MMA, de Chiara MLV, Mastrandrea L, Colelli G (2021) Comparison performance of visible-nir and near-infrared hyperspectral imaging for prediction of nutritional quality of goji berry (lycium barbarum l.). Foods 10(7):1676. https://doi.org/10.3390/foods10071676

Guan X, Liu J, Huang K, Kuang J, Liu D (2019) Evaluation of moisture content in processed apple chips using nirs and wavelength selection techniques. Infrared Phys Technol 98:305–310. https://doi.org/10.1016/j.infrared.2019.01.010

Ma H, Zhao K, Jin X, Ji J, Qiu Z, Gao S, College Of Agricultural Equipment Engineering HUOS, Collaborative Innovation Center Of Machinery Equipment Advanced Manufacturing Of Henan Province LC (2019) Spectral difference analysis and identification of different maturity blueberry fruit based on hyperspectral imaging using spectral index. Int J Agric Biol Eng 12(3):134–140. https://doi.org/10.25165/j.ijabe.20191203.4325

Shao Y, Wang Y, Xuan G, Gao Z, Hu Z, Gao C, Wang K (2020) Assessment of strawberry ripeness using hyperspectral imaging. Anal Lett 54(10):1547–1560. https://doi.org/10.1080/00032719.2020.1812622

Gao Z, Shao Y, Xuan G, Wang Y, Liu Y, Han X (2020) Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artificial Intelligence in Agriculture 4:31–38. https://doi.org/10.1016/j.aiia.2020.04.003

Benelli A, Cevoli C, Ragni L, Fabbri A (2021) In-field and non-destructive monitoring of grapes maturity by hyperspectral imaging. Biosys Eng 207:59–67. https://doi.org/10.1016/j.biosystemseng.2021.04.006

Tong L, Toppinen A, Wang L, Berghäll S (2023) How motivation, opportunity, and ability impact sustainable consumption behaviour of fresh berry products. J Clean Prod 401:136698. https://doi.org/10.1016/j.jclepro.2023.136698

Hussein Z, Fawole OA, Opara UL (2020) Harvest and postharvest factors affecting bruise damage of fresh fruits. Hortic Plant J 6(1):1–13. https://doi.org/10.1016/j.hpj.2019.07.006

Mohsenin NN (1986) Physical properties of plant and animal materials. J Biomed Mater Res B Appl Biomater 11(1):83–89

Hu M, Dong Q, Liu B, Opara UL, Chen L (2015) Estimating blueberry mechanical properties based on random frog selected hyperspectral data. Postharvest Biol Technol 106:1–10. https://doi.org/10.1016/j.postharvbio.2015.03.014

Jiang Y, Li C, Takeda F (2016) Nondestructive detection and quantification of blueberry bruising using near-infrared (nir) hyperspectral reflectance imaging. Sci Rep 6(1). https://doi.org/10.1038/srep35679

Fan S, Li C, Huang W, Chen L (2017) Detection of blueberry internal bruising over time using nir hyperspectral reflectance imaging with optimum wavelengths. Postharvest Biol Technol 134:55–66. https://doi.org/10.1016/j.postharvbio.2017.08.012

Fan S, Li C, Huang W, Chen L (2018) Data fusion of two hyperspectral imaging systems with complementary spectral sensing ranges for blueberry bruising detection. Sensors 18(12):4463. https://doi.org/10.3390/s18124463

Wang Z, Hu M, Zhai G (2018) Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors 18(4):1126. https://doi.org/10.3390/s18041126

Kepner C, Swett CL (2018) Previously unrecognized diversity within fungal fruit rot pathosystems on vitis vinifera and hybrid white wine grapes in mid-atlantic vineyards. Australas Plant Pathol 47(2):181–188. https://doi.org/10.1007/s13313-017-0538-4

Shankar J (2021) Food habit associated mycobiota composition and their impact on human health. Front Nutr 8. https://doi.org/10.3389/fnut.2021.773577

Zalewski ZD, Page R, Lankau RA, McManus PS (2021) Role of yeasts in the cranberry fruit rot disease complex. Plant Dis 105(8):2141–2148. https://doi.org/10.1094/PDIS-11-19-2303-RE

Siedliska A, Baranowski P, Zubik M, Mazurek W, Sosnowska B (2018) Detection of fungal infections in strawberry fruit by vnir/swir hyperspectral imaging. Postharvest Biol Technol 139:115–126. https://doi.org/10.1016/j.postharvbio.2018.01.018

Qiao S, Wang Q, Zhang J, Pei Z (2020) Detection and classification of early decay on blueberry based on improved deep residual 3d convolutional neural network in hyperspectral images. Sci Program 2020:1–12. https://doi.org/10.1155/2020/8895875

Ye W, Yan T, Zhang C, Duan L, Chen W, Song H, Zhang Y, Xu W, Gao P (2022) Detection of pesticide residue level in grape using hyperspectral imaging with machine learning. Foods 11(11):1609. https://doi.org/10.3390/foods11111609

Wu D, Meng L, Yang L, Wang J, Fu X, Du X, Li S, He Y, Huang L (2019) Feasibility of laser-induced breakdown spectroscopy and hyperspectral imaging for rapid detection of thiophanate-methyl residue on mulberry fruit. Int J Mol Sci 20(8):2017. https://doi.org/10.3390/ijms20082017

Xu M, Sun J, Zhou X, Tang N, Shen J, Wu X (2021) Research on nondestructive identification of grape varieties based on eemd-dwt and hyperspectral image. J Food Sci 86(5):2011–2023. https://doi.org/10.1111/1750-3841.15715

Fan Z, Zhaoru Y, Jianxin X, Bing X (2021) Hyperspectral nondestructive identification of wild and cultivated black wolfberry. Spectrosc Spect Anal 41(01):201–205. www.gpxygpfx.com/CN/Y2021/V41/I01/201

Leiva-Valenzuela GA, Aguilera JM (2013) Automatic detection of orientation and diseases in blueberries using image analysis to improve their postharvest storage quality. Food Control 33(1):166–173. https://doi.org/10.1016/j.foodcont.2013.02.025

Soltanikazemi M, Abdanan Mehdizadeh S, Heydari M (2017) Non-destructive evaluation of the internal fruit quality of black mulberry (morus nigra l.) Using visible-infrared spectroscopy and genetic algorithm. Int J Food Prop 20(11):2437–2447. https://doi.org/10.1080/10942912.2016.1238930

Tingting S, Xiaobo Z, Jiyong S, Zhihua L, Xiaowei H, Yiwei X, Wu C (2016) Determination geographical origin and flavonoids content of goji berry using near-infrared spectroscopy and chemometrics. Food Anal Methods 9(1):68–79. https://doi.org/10.1007/s12161-015-0175-x

Yahui L, Xiaobo Z, Tingting S, Jiyong S, Jiewen Z, Holmes M (2017) Determination of geographical origin and anthocyanin content of black goji berry (Lycium ruthenicum murr.) Using near-infrared spectroscopy and chemometrics. Food Anal Methods 10(4):1034–1044. https://doi.org/10.1007/s12161-016-0666-4

Yahui L, Yanxiao L, Weilong T, Xiaoxia S, Jiyong S, Xiaobo Z, Junjun Z, Caiping J (2020) Judgment of origin and quality information of black wolfberry based on fusion of near and middle infrared spectroscopy. Spectrosc Spectr Anal 40(12):3878–3883

Yu Y, Zhang K, Yang L, Zhang D (2019) Fruit detection for strawberry harvesting robot in non-structural environment based on mask-rcnn. Comput Electron Agric 163:104846. https://doi.org/10.1016/j.compag.2019.06.001

Esteki M, Shahsavari Z, Simal-Gandara J (2018) Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control 91:100–112. https://doi.org/10.1016/j.foodcont.2018.03.031