The Application of Kernel Smoothing to Time Series Data
Tóm tắt
There are already a lot of models to fit a set of stationary time series, such as AR, MA, and ARMA models. For the non-stationary data, an ARIMA or seasonal ARIMA models can be used to fit the given data. Moreover, there are also many statistical softwares that can be used to build a stationary or non-stationary time series model for a given set of time series data, such as SAS, SPLUS, etc. However, some statistical softwares wouldn’t work well for small samples with or without missing data, especially for small time series data with seasonal trend. A nonparametric smoothing technique to build a forecasting model for a given small seasonal time series data is carried out in this paper. And then, both the method provided in this paper and that in SAS package are applied to the modeling of international airline passengers data respectively, the comparisons between the two methods are done afterwards. The results of the comparison show us the method provided in this paper has superiority over SAS’s method.
Tài liệu tham khảo
Box, G.E.P., Jenkins, G.W., Reinsel, G.C. Time series analysis: Forecasting and control, 3rd Ed., Prentice-Hall, Inc., 1994
Brockewell, P.J., Davis, R.A. Time series: Theory and methods, 2nd ed., Springer-Verlag, New York, 1996
Eubank, R.L. Nonparametric regression and spline smoothing. Marcel Dekker, Inc., New York, 1999
Hart, J.D. Nonparametric smoothing and Lack-of-Fit Tests. Springer-Verlag, New York, 1997
Wu, X.Z., Wang, Z.J. Nonparametric statistical Methods. Chinese High Education Press, Beijing, 1996 (in Chinese)