The Application of Cold Plasma Technology in Low-Moisture Foods

Food Engineering Reviews - Tập 15 - Trang 86-112 - 2023
Wei Rao1,2, Yeqing Li1,2, Harleen Dhaliwal3, Mengmeng Feng4, Qisen Xiang5, M. S. Roopesh3, Daodong Pan1,2, Lihui Du1,2
1State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, China
2Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
3Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
4BioVectra Inc., Halifax, Canada
5College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China

Tóm tắt

Low-moisture foods such as spices, grains, and seeds constitute an important part of the human diet. Increased consumer concern for food safety and food quality has focused on the decontamination technologies required for low-moisture foods. Cold plasma treatment has been a promising novel technology in the food processing industry due to its advantages in safety, efficiency, versatility, and environmentally friendly nature. It has shown various capabilities on safety and quality control in low-moisture foods. This paper comprehensively reviewed the application of cold plasma in low-moisture foods, including inactivation of microorganisms, degradation of mycotoxins, influences on the quality of low-moisture foods, and promotion of seed germination. Cold plasma can inactivate the pathogenic microorganisms on the surface of low-moisture foods, by generating active species, ultraviolet radiation, and electric fields, which helps to extend the shelf life of foods while having minimal impact on food quality. Cold plasma technology is also an effective approach to detoxify mycotoxin-contaminated low-moisture foods by degrading various mycotoxins. With the manipulation of parameters for cold plasma generation, target functional properties of food products may be obtained. In addition, the application of cold plasma in seed germination is promising and could be of great significance to the global food crisis. This review also suggests that more systematic studies are needed to employ cold plasma in the low-moisture foods industry for selected applications.

Tài liệu tham khảo

Liu S, Wei X, Tang J, Qin W, Wu Q (2021) Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes. Crit Rev Food Sci Nutr 343:Article 128398. https://doi.org/10.1080/10408398.2021.2016601 Liu S, Roopesh MS, Tang J, Wu Q, Qin W (2022) Recent development in low-moisture foods: Microbial safety and thermal process. Food Res Int 155:111072. https://doi.org/10.1016/j.foodres.2022.111072 Huang Z, Yu X, Yang Q, Zhao Y, Wu W (2021) Aptasensors for Staphylococcus aureus risk assessment in food. Front Microbiol 12:Article 714265. https://doi.org/10.3389/fmicb.2021.714265 Wason S, Verma T, Subbiah J (2021) Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr Rev Food Sci Food Safety 20(5):4950–4992. https://doi.org/10.1111/1541-4337.12800 Chitrakar B, Zhang M, Adhikari B (2018) Dehydrated foods: Are they microbiologically safe? Crit Rev Food Sci Nutr 59(17):1–43. https://doi.org/10.1080/10408398.2018.1466265 Denes T, Wiedmann M (2014) Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety. Curr Opin Biotechnol 26:45–49. https://doi.org/10.1016/j.copbio.2013.09.001 Dastyar H, Ghoreishi SM, Ghani M (2022) Shaker-Assisted Liquid-Liquid Microextraction Followed by Solidification of Floating Organic Droplet and Back-Extraction Procedure besides Partial Least Squares Regression for Simultaneous Spectrophotometric Determination of Benzoic Acid and Sorbic Acid. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2022.2039226 Dey S, Nagababu BH (2022) Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chem Adv 1:Article 100019. https://doi.org/10.1016/j.focha.2022.100019 Kim TD, Begyn K, Khanal S, Taghlaoui F, Heyndrickx M, Rajkovic A, ... Aertsen A (2021) Bacillus weihenstephanensis can readily evolve for increased endospore heat resistance without compromising its thermotype. Int J Food Microbiol 341:109072. https://doi.org/10.1016/j.ijfoodmicro.2021.109072 Khouryieh HA (2021) Novel and emerging technologies used by the US food processing industry. Innov Food Sci Emerg Technol 67:Article 102559. https://doi.org/10.1016/j.ifset.2020.102559 Adebo OA, Molelekoa T, Makhuvele R, Adebiyi JA, Oyedeji AB, Gbashi S, Njobeh PB (2021) A review on novel non-thermal food processing techniques for mycotoxin reduction. Int J Food Sci Technol 56(1):13–27. https://doi.org/10.1111/ijfs.14734 Abedi E, Pourmohammadi K (2021) Chemical modifications and their effects on gluten protein: An extensive review. Food Chem 343:Article 128398. https://doi.org/10.1016/j.foodchem.2020.128398 Ali F, Qanmber G, Li F, Wang Z (2022) Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 35:199–214. https://doi.org/10.1016/j.jare.2021.03.011 Klupczynska EA, Pawlowski TA (2021) Regulation of seed dormancy and germination mechanisms in a changing environment. Int J Mol Sc 22(3):Article 1357. https://doi.org/10.3390/ijms22031357 Waskow A, Avino F, Howling A, Furno I (2022) Entering the plasma agriculture field: An attempt to standardize protocols for plasma treatment of seeds. Plasma Process Polym 19(1):Article e2100152. https://doi.org/10.1002/ppap.202100152 Iwasaki M, Penfield S, Lopez-Molina L (2022) Parental and environmental control of seed dormancy in arabidopsis thaliana. Annu Rev Plant Biol 73:355–378. https://doi.org/10.1146/annurev-arplant-102820-090750 Okyere AY, Rajendran S, Annor GA (2022) Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Curr Res Food Sci 5:451–463. https://doi.org/10.1016/j.crfs.2022.02.007 Shelar A, Singh AV, Dietrich P, Maharjan RS, Thissen A, Didwal PN, Patil R (2022) Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. RSC Adv 12(17):10467–10488. https://doi.org/10.1039/d2ra00809b Kletschkus K, Haralambiev L, Mustea A, Bekeschus S, Stope MB (2020) Review of innovative physical therapy methods: Introduction to the principles of cold physical plasma. In Vivo 34(6):3103–3107. https://doi.org/10.21873/invivo.12143 Mandal R, Singh A, Singh AP (2018) Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci Technol 80:93–103. https://doi.org/10.1016/j.tifs.2018.07.014 Mollakhalili-Meybodi N, Yousefi M, Nematollahi A, Khorshidian N (2021) Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. Eur Food Res Technol 247(7):1579–1594. https://doi.org/10.1007/s00217-021-03750-w Xiang Q, Liu X, Li J, Ding T, Zhang H, Zhang X, Bai Y (2018) Influences of cold atmospheric plasma on microbial safety, physicochemical and sensorial qualities of meat products. J Food Sci Technol-Mysore 55(3):846–857. https://doi.org/10.1007/s13197-017-3020-y Sakudo A, Misawa T, Yagyu Y (2020) Equipment design for cold plasma disinfection of food products. Adv Cold Plasma Appl Food Safety Preserv 289–307. https://doi.org/10.1016/b978-0-12-814921-8.00010-4 Xiang Q, Huangfu L, Dong S, Ma Y, Li K, Niu L, Bai Y (2021) Feasibility of atmospheric cold plasma for the elimination of food hazards: Recent advances and future trends. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.2002257 Feizollahi E, Misra NN, Roopesh MS (2021) Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications. Crit Rev Food Sci Nutr 61(4):666–689. https://doi.org/10.1080/10408398.2020.1743967 Zhang H, Ma D, Qiu R, Tang Y, Du C (2017) Non-thermal plasma technology for organic contaminated soil remediation: A review. Chem Eng J 313:157–170. https://doi.org/10.1016/j.cej.2016.12.067 Nasiru MM, Frimpong EB, Muhammad U, Qian J, Mustapha AT, Yan W, Zhang J (2021) Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Compr Rev Food Sci Food Safety 20(3):2626–2659. https://doi.org/10.1111/1541-4337.12740 Mok C, Lee T, Puligundla P (2015) Afterglow corona discharge air plasma (ACDAP) for inactivation of common food-borne pathogens. Food Res Int 69:418–423. https://doi.org/10.1016/j.foodres.2014.11.034 Scholtz V, Julak J, Kriha V (2010) The microbicidal effect of low-temperature plasma generated by corona discharge: Comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Processes Polym 7(3–4):237–243. https://doi.org/10.1002/ppap.200900072 Tolouie H, Mohammadifar MA, Ghomi H, Hashemi M (2018) Cold atmospheric plasma manipulation of proteins in food systems. Crit Rev Food Sci Nutr 58(15):2583–2597. https://doi.org/10.1080/10408398.2017.1335689 Coutinho NM, Silveira MR, Rocha RS, Moraes J, Ferreira MVS, Pimentel TC, Cruz AG (2018) Cold plasma processing of milk and dairy products. Trends Food Sci Technol 74:56–68. https://doi.org/10.1016/j.tifs.2018.02.008 Tanaka H, Bekeschus S, Yan D, Hori M, Keidar M, Laroussi M (2021) Plasma-treated solutions (PTS) in cancer therapy. Cancers 13(7):Article 1737. https://doi.org/10.3390/cancers13071737 Misra N, Bhatt S, Khonsari FA, Kumar V (2021) State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? Plasma Process Polym 18(7):Article e2000215. https://doi.org/10.1002/ppap.202000215 Wu M, Jia L, Lu S, Qin Z, Wei S, Yan R (2021) Interfacial performance of high-performance fiber-reinforced composites improved by cold plasma treatment: A review. Surf Interfaces 24:Article 101077. https://doi.org/10.1016/j.surfin.2021.101077 Patange A, Boehm D, Giltrap M, Lu P, Cullen PJ, Bourke P (2018) Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Sci Total Environ 631–632:298–307. https://doi.org/10.1016/j.scitotenv.2018.02.269 Laroque DA, Seo ST, Valencia GA, Laurindo JB, Mattar Carciofi BA (2022) Cold plasma in food processing: Design, mechanisms, and application. J Food Eng 312:Article 110748. https://doi.org/10.1016/j.jfoodeng.2021.110748 Roh SH, Oh YJ, Lee SY, Kang JH, Min SC (2020) Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. LWT 127:109429. https://doi.org/10.1016/j.lwt.2020.109429 Hojnik N, Modic M, Walsh JL, Zigon D, Javornik U, Plavec J, ... Cvelbar U (2021) Unravelling the pathways of air plasma induced aflatoxin B-1 degradation and detoxification. J Hazard Mater 403:123593. https://doi.org/10.1016/j.jhazmat.2020.123593 Gavahian M, Sarangapani C, Misra NN (2021) Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies. Food Res Int 141:110138. https://doi.org/10.1016/j.foodres.2021.110138 Anbarasan R, Jaspin S, Bhavadharini B, Pare A, Pandiselvam R, Mahendran R (2022) Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone treatments. LWT 159:113193. https://doi.org/10.1016/j.lwt.2022.113193 Cong L, Huang M, Zhang J, Yan W (2021) Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce. J Sci Food Agric 101(2):424–432. https://doi.org/10.1002/jsfa.10651 Mir SA, Siddiqui MW, Dar BN, Shah MA, Wani MH, Roohinejad S, Ali A (2020) Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. J Appl Microbiol 129(3):474–485. https://doi.org/10.1111/jam.14541 Chaple S, Sarangapani C, Jones J, Carey E, Causeret L, Genson A, ... Bourke P (2020) Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innov Food Sci Emerg Technol 66:Article 102529. https://doi.org/10.1016/j.ifset.2020.102529 Terebun P, Kwiatkowski M, Starek A, Reuter S, Mok YS, Pawlat J (2021) Impact of short time atmospheric plasma treatment on onion seeds. Plasma Chem Plasma Process 41(2):559–571. https://doi.org/10.1007/s11090-020-10146-3 Ziuzina D, Misra N, Han L (2019) Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2019.102229 Hernandez-Torres CJ, Reyes-Acosta YK, Chavez-Gonzalez ML, Davila-Medina MD, Verma DK, Martinez-Hernandez JL, Aguilar CN (2022) Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 29(4):1957–1980. https://doi.org/10.1016/j.sjbs.2021.12.023 Vandenberg LN, Bugos J (2021) Assessing the public health implications of the food preservative propylparaben: Has this chemical been safely used for decades. Curr Environ Health Rep 8(1):54–70. https://doi.org/10.1007/s40572-020-00300-6 Hernandez-Hernandez HM, Moreno-Vilet L, Villanueva-Rodriguez SJ (2019) Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innov Food Sci Emerg Technol 58:Article 102233. https://doi.org/10.1016/j.ifset.2019.102233 Ozkan G, Guldiken B, Capanoglu E (2019) Effect of novel food processing technologies on beverage antioxidants. Process Sustain Beverages 413–449. https://doi.org/10.1016/b978-0-12-815259-1.00012-4 Temba BA, Sultanbawa Y, Kriticos DJ, Fox GP, Harvey JJW, Fletcher MT (2016) Tools for defusing a major global food and feed safety risk: Nonbiological postharvest procedures to decontaminate mycotoxins in foods and feeds. J Agric Food Chem 64(47):8959–8972. https://doi.org/10.1021/acs.jafc.6b03777 Ganesan AR, Tiwari U, Ezhilarasi PN, Rajauria G (2021) Application of cold plasma on food matrices: A review on current and future prospects. J Food Process Preserv 45(1):Article e15070. https://doi.org/10.1111/jfpp.15070 Umair M, Jabbar S, Ayub Z, Aadil RM, Abid M, Zhang J, Zhao L (2021) Recent advances in plasma technology: Influence of atmospheric cold plasma on spore inactivation. Food Rev Intl. https://doi.org/10.1080/87559129.2021.1888972 Ziuzina D, Petil S, Cullen PJ, Keener KM, Bourke P (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116. https://doi.org/10.1016/j.fm.2014.02.007 Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: A review. IEEE Trans Plasma Sci 34(4):1257–1269. https://doi.org/10.1109/tps.2006.878381 Yusupov M, Bogaerts A, Huygh S, Snoeckx R, van Duin ACT, Neyts EC (2013) Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. J Phys Chem C 117(11):5993–5998. https://doi.org/10.1021/jp3128516 Misra NN, Jo C (2017) Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci Technol 64:74–86. https://doi.org/10.1016/j.tifs.2017.04.005 Eto H, Ono Y, Ogino A, Nagatsu M (2008) Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge. Appl Phys Lett 93(22):Article 221502. https://doi.org/10.1063/1.3039808 Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasilets VN, Friedman G (2007) Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Processes Polym 4(4):370–375. https://doi.org/10.1002/ppap.200600217 Han L, Patil S, Boehm D, Milosavljevic V, Cullen PJ, Bourke P (2016) Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl Environ Microbiol 82(2):450–458. https://doi.org/10.1128/aem.02660-15 Cui H, Li H, Abdel-Samie MA, Surendhiran D, Lin L (2021) Anti-Listeria monocytogenes biofilm mechanism of cold nitrogen plasma. Innov Food Sci Emerg Technol 67:Article 102571. https://doi.org/10.1016/j.ifset.2020.102571 Qian J, Ma L, Yan W, Zhuang H, Huang M, Zhang J, Wang J (2022) Inactivation kinetics and cell envelope damages of foodborne pathogens Listeria monocytogenes and Salmonella Enteritidis treated with cold plasma. Food Microbiol 101:Article 103891. https://doi.org/10.1016/j.fm.2021.103891 Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P (2007) Inactivation of Escherichia coli on almonds using nonthermal plasma. J Food Sci 72(2):M62–M66. https://doi.org/10.1111/j.1750-3841.2007.00275.x Beyrer M, Smeu I, Martinet D, Howling A, Pina-Perez MC, Ellert C (2020) Cold atmospheric plasma inactivation of microbial spores compared on reference surfaces and powder particles. Food Bioprocess Technol 13(5):827–837. https://doi.org/10.1007/s11947-020-02438-5 Darvish H, Ramezan Y, Khani MR, Kamkari A (2022) Effect of low-pressure cold plasma processing on decontamination and quality attributes of Saffron (Crocus sativus L.). Food Sci Nutr. https://doi.org/10.1002/fsn3.2824 Charoux CMG, Free L, Hinds LM, Vijayaraghavan RK, Daniels S, O’Donnell CP, Tiwari BK (2020) Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of a model liquid food system and black pepper grains. LWT 118:108716. https://doi.org/10.1016/j.lwt.2019.108716 Ahangari M, Ramezan Y, Khani MR (2021) Effect of low pressure cold plasma treatment on microbial decontamination and physicochemical properties of dried walnut kernels (Juglans regia L.). J Food Process Eng 44(1):Article e13593. https://doi.org/10.1111/jfpe.13593 Hemmati V, Garavand F, Goudarzi M, Sarlak Z, Cacciotti I, Tiwari BK (2021) Cold atmospheric-pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses. Int J Food Sci Technol 56(5):2224–2232. https://doi.org/10.1111/ijfs.14838 Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlueter O (2015) Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 55:221–229. https://doi.org/10.1016/j.foodcont.2015.03.003 Sen Y, Onal-Ulusoy B, Mutlu M (2019) Aspergillus decontamination in hazelnuts: Evaluation of atmospheric and low-pressure plasma technology. Innov Food Sci Emerg Technol 54:235–242. https://doi.org/10.1016/j.ifset.2019.04.014 Durek J, Froehling A, Bussler S, Hase A, Ehlbeck J, Schlueter OK (2022) Pilot-scale generation of plasma processed air and its influence on microbial count, microbial diversity, and selected quality parameters of dried herbs. Innov Food Sci Emerg Technol 75:Article 102890. https://doi.org/10.1016/j.ifset.2021.102890 Basaran P, Basaran-Akgul N, Oksuz L (2008) Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25(4):626–632. https://doi.org/10.1016/j.fm.2007.12.005 Niemira BA (2012) Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J Food Sci 77(3):M171–M175. https://doi.org/10.1111/j.1750-3841.2011.02594.x Amini M, Ghoranneviss M (2016) Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT 73:178–184. https://doi.org/10.1016/j.lwt.2016.06.014 Hertwig C, Reineke K, Ehlbeck J, Erdogdu B, Rauh C, Schlueter O (2015) Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. J Food Eng 167:12–17. https://doi.org/10.1016/j.jfoodeng.2014.12.017 Molina-Hernandez JB, Laika J, Peralta-Ruiz Y, Palivala VK, Tappi S, Cappelli F, ... Chaves-Lopez C (2022) Influence of atmospheric cold plasma exposure on naturally present fungal spores and physicochemical characteristics of sundried tomatoes (Solanum lycopersicum L.). Foods 11(2):Article 210. https://doi.org/10.3390/foods11020210 Lee SY, In J, Chung M-S, Min SC (2021) Microbial decontamination of particulate food using a pilot-scale atmospheric plasma jet treatment system. J Food Eng 294:110436. https://doi.org/10.1016/j.jfoodeng.2020.110436 Kang M-H, Veerana M, Eom S, Uhm H-S, Ryu S, Park G (2020) Plasma mediated disinfection of rice seeds in water and air. J Phys D-Appl Phys 53(21):Article 214001. https://doi.org/10.1088/1361-6463/ab79de Charoux CMG, Patange A, Lamba S, O’Donnell CP, Tiwari BK, Scannell AGM (2021) Applications of nonthermal plasma technology on safety and quality of dried food ingredients. J Appl Microbiol 130(2):325–340. https://doi.org/10.1111/jam.14823 Alp D, Bulantekin O (2021) The microbiological quality of various foods dried by applying different drying methods: a review. Eur Food Res Technol 247(6):1333–1343. https://doi.org/10.1007/s00217-021-03731-z Reddy KRN, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT (2010) An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev 29(1):3–26. https://doi.org/10.3109/15569541003598553 Sun Z, Xu J, Wang G, Song A, Li C, Zheng S (2020) Hydrothermal fabrication of rectorite based biocomposite modified by chitosan derived carbon nanoparticles as efficient mycotoxins adsorbents. Appl Clay Sci 184:Article 105373. https://doi.org/10.1016/j.clay.2019.105373 Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, Bijak M (2020) Molecular aspects of mycotoxins-A serious problem for human health. Int J Mol Sci 21(21):Article 8187. https://doi.org/10.3390/ijms21218187 Alizadeh AM, Hashempour-Baltork F, Khaneghah AM, Hosseini H (2021) New perspective approaches in controlling fungi and mycotoxins in food using emerging and green technologies. Curr Opin Food Sci 39:7–15. https://doi.org/10.1016/j.cofs.2020.12.006 Gavahian M, Mathad GN, Oliveira CAF, Khaneghah AM (2021) Combinations of emerging technologies with fermentation: Interaction effects for detoxification of mycotoxins? Food Res Int 141:110104. https://doi.org/10.1016/j.foodres.2021.110104 Sipos P, Peles F, Brasso DL, Beri B, Pusztahelyi T, Pocsi I, Gyori Z (2021) Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins 13(3):Article 204. https://doi.org/10.3390/toxins13030204 Yousefi M, Mohammadi MA, Khajavi MZ, Ehsani A, Scholtz V (2021) Application of novel non-thermal physical technologies to degrade mycotoxins. J Fungi 7(5):Article 395. https://doi.org/10.3390/jof7050395 Liu Y, Galani Yamdeu JH, Gong YY, Orfila C (2020) A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr Rev Food Sci Food Safety 19(4):1521–1560. https://doi.org/10.1111/1541-4337.12562 Pankaj SK, Shi H, Keener KM (2018) A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 71:73–83. https://doi.org/10.1016/j.tifs.2017.11.007 Gayan E, Condon S, Alvarez I (2014) Biological aspects in food preservation by ultraviolet light: A review. Food Bioprocess Technol 7(1):1–20. https://doi.org/10.1007/s11947-013-1168-7 Byun K-H, Park SY, Lee DU, Chun HS, Ha S-D (2020) Effect of UV-C irradiation on inactivation of Aspergillus flavus and Aspergillus parasiticus and quality parameters of roasted coffee bean (Coffea arabica L.). Food Addit Contam Chem Anal Control Expo Risk Assess 37(3), 507–518. https://doi.org/10.1080/19440049.2020.1711971 Oms-Oliu G, Martin-Belloso O, Soliva-Fortuny R (2010) Pulsed light treatments for food preservation. A review. Food Bioprocess Technol 3(1):13–23. https://doi.org/10.1007/s11947-008-0147-x Guo Y, Zhao L, Ma Q, Ji C (2021) Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 140:Article 109878. https://doi.org/10.1016/j.foodres.2020.109878 Mir SA, Dar BN, Shah MA, Sofi SA, Hamdani AM, Oliveira CAF, ... Sant’Ana AS (2021) Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem Toxicol 148:Article 111976. https://doi.org/10.1016/j.fct.2021.111976 Rustom IYS (1997) Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chem 59(1):57–67. https://doi.org/10.1016/s0308-8146(96)00096-9 Luo X, Qi L, Liu Y, Wang R, Yang D, Li K, ... Chen Z (2017) Effects of electron beam lrradiation on zearalenone and ochratoxin A in naturally contaminated corn and corn quality parameters. Toxins 9(3):84. https://doi.org/10.3390/toxins9030084 Sujayasree OJ, Chaitanya AK, Bhoite R, Pandiselvam R, Kothakota A, Gavahian M, Khaneghah AM (2022) Ozone: An advanced oxidation technology to enhance sustainable food consumption through mycotoxin degradation. Ozone Sci Eng 44(1):17–37. https://doi.org/10.1080/01919512.2021.1948388 Qi L, Li Y, Luo X, Wang R, Zheng R, Wang L, Chen Z (2016) Detoxification of zearalenone and ochratoxin A by ozone and quality evaluation of ozonised corn. Food Addit Contam Chem Anal Control Expo Risk Assess 33(11):1700–1710. https://doi.org/10.1080/19440049.2016.1232863 Akbas MY, Ozdemir M (2008) Effect of gaseous ozone on microbial inactivation and sensory of flaked red peppers. Int J Food Sci Technol 43(9):1657–1662. https://doi.org/10.1111/j.1365-2621.2008.01722.x Drishya C, Yoha KS, Perumal AB, Moses JA, Anandharamakrishnan C, Balasubramaniam VM (2022) Impact of nonthermal food processing techniques on mycotoxins and their producing fungi. Int J Food Sci Technol 57(4):2140–2148. https://doi.org/10.1111/ijfs.15444 Villarreal-Barajas T, Vazquez-Duran A, Mendez-Albores A (2022) Effectiveness of electrolyzed oxidizing water on fungi and mycotoxins in food. Food Control 131:108454. https://doi.org/10.1016/j.foodcont.2021.108454 Feizollahi E, Roopesh MS (2021) Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1895056 Kaur M, Hueberli D, Bayliss KL (2020) Cold plasma: exploring a new option for management of postharvest fungal pathogens, mycotoxins and insect pests in Australian stored cereal grain. Crop Pasture Sci 71(8):715–724. https://doi.org/10.1071/cp20078 Nishimwe K, Agbemafle I, Reddy MB, Keener K, Maier DE (2021) Cytotoxicity assessment of Aflatoxin B1 after high voltage atmospheric cold plasma treatment. Toxicon 194:17–22. https://doi.org/10.1016/j.toxicon.2021.02.008 Shi H, Cooper B, Stroshine RL, Ileleji KE, Keener KM (2017) Structures of degradation products and degradation pathways of aflatoxin B-1 by high-voltage atmospheric cold plasma (HVACP) treatment. J Agric Food Chem 65(30):6222–6230. https://doi.org/10.1021/acs.jafc.7b01604 Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL (2017) Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol 10(6):1042–1052. https://doi.org/10.1007/s11947-017-1873-8 Patricia Casas-Junco P, Raymundo Solis-Pacheco J, Arturo Ragazzo-Sanchez J, Rosa Aguilar-Uscanga B, Ulises Bautista-Rosales P, Calderon-Santoyo M (2019) Cold plasma treatment as an alternative for ochratoxin A detoxification and inhibition of mycotoxigenic fungi in roasted coffee. Toxins 11(6). https://doi.org/10.3390/toxins11060337 Misra NN, Yadav B, Roopesh MS, Jo C (2019) Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Compr Rev Food Sci Food Safety 18(1):106–120. https://doi.org/10.1111/1541-4337.12398 Wang S-Q, Huang G-Q, Li Y-P, Xiao J-X, Zhang Y, Jiang W-L (2015) Degradation of aflatoxin B-1 by low-temperature radio frequency plasma and degradation product elucidation. Eur Food Res Technol 241(1):103–113. https://doi.org/10.1007/s00217-015-2439-5 Wielogorska E, Ahmed Y, Meneely J, Graham WG, Elliott CT, Gilmore BF (2019) A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chem 301:125281. https://doi.org/10.1016/j.foodchem.2019.125281 Xue M, Wang T, Sun Q, Qu G, Jia H, Zhu L (2021) Insights into the highly efficient detoxification of the biotoxin patulin in water by discharge plasma oxidation. Chem Eng J 411:128432. https://doi.org/10.1016/j.cej.2021.128432 Park BJ, Takatori K, Sugita-Konishi Y, Kim I-H, Lee M-H, Han D-W, Park J-C (2007) Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 201(9–11):5733–5737. https://doi.org/10.1016/j.surfcoat.2006.07.092 Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML (2016) Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins 8(5):125. https://doi.org/10.3390/toxins8050125 Makari M, Hojjati M, Shahbazi S, Askari H (2021) Elimination of Aspergillus flavus from pistachio nuts with dielectric barrier discharge (DBD) cold plasma and its impacts on biochemical indices. J Food Qual 2021:9968711. https://doi.org/10.1155/2021/9968711 Devi Y, Thirumdas R, Sarangapani C, Deshmukh RR, Annapure US (2017) Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 77:187–191. https://doi.org/10.1016/j.foodcont.2017.02.019 Iqdiam BM, Abuagela MO, Boz Z, Marshall SM, Goodrich-Schneider R, Sims CA, ... Welt BA (2020) Effects of atmospheric pressure plasma jet treatment on aflatoxin level, physiochemical quality, and sensory attributes of peanuts. J Food Process Preser 44(1):e14305. https://doi.org/10.1111/jfpp.14305 Hojnik N, Modic M, Zigon D, Kovac J, Jurov A, Dickenson A, ... Cvelbar U (2021) Cold atmospheric pressure plasma-assisted removal of aflatoxin B-1 from contaminated corn kernels. Plasma Process Polym 18(1):e2000163. https://doi.org/10.1002/ppap.202000163 Puligundla P, Lee T, Mok C (2020) Effect of corona discharge plasma jet treatment on the degradation of aflatoxin B1 on glass slides and in spiked food commodities. LWT 124:108333. https://doi.org/10.1016/j.lwt.2019.108333 Hajnal EJ, Vukic M, Pezo L, Orcic D, Puac N, Skoro N, ... Simovic DS (2019) Effect of atmospheric cold plasma treatments on reduction of Alternaria toxins content in wheat flour. Toxins 11(12):704. https://doi.org/10.3390/toxins11120704 Durek J, Schlueter O, Roscher A, Durek P, Froehling A (2018) Inhibition or stimulation of ochratoxin A synthesis on inoculated barley triggered by diffuse coplanar surface barrier discharge plasma. Front Microbiol 9:2782. https://doi.org/10.3389/fmicb.2018.02782 Kis M, Milosevic S, Vulic A, Herceg Z, Vukusic T, Pleadin J (2020) Efficacy of low pressure DBD plasma in the reduction of T-2 and HT-2 toxin in oat flour. Food Chem 316:126372. https://doi.org/10.1016/j.foodchem.2020.126372 Iqdiam BM, Feizollahi E, Arif MF, Jeganathan B, Vasanthan T, Thilakarathna MS, Roopesh MS (2021) Reduction of T-2 and HT-2 mycotoxins by atmospheric cold plasma and its impact on quality changes and germination of wheat grains. J Food Sci 86(4):1354–1371. https://doi.org/10.1111/1750-3841.15658 Feizollahi E, Roopesh MS (2021) Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product factors. Food Bioprocess Technol 14(11):2107–2119. https://doi.org/10.1007/s11947-021-02692-1 Feizollahi E, Iqdiam B, Vasanthan T, Thilakarathna MS, Roopesh MS (2020) Effects of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, Quality Parameters, and Germination of Barley Grains. Appl Sci-Basel 10(10):3530. https://doi.org/10.3390/app10103530 Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L (2018) Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins 10(6):214. https://doi.org/10.3390/toxins10060214 Ganesan AR, Mohan K, Rajan DK, Pillay AA, Palanisami T, Sathishkumar P, Conterno L (2022) Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem. https://doi.org/10.1016/j.foodchem.2021.131978 Hoppanova L, Dylikova J, Kovacik D, Medvecka V, Durina P, Krystofova S, Kalinakova B (2020) The effect of cold atmospheric pressure plasma on Aspergillus ochraceus and ochratoxin A production. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 113(10):1479–1488. https://doi.org/10.1007/s10482-020-01457-8 Wang X, Wang S, Yan Y, Wang W, Zhang L, Zong W (2020) The degradation of Alternaria mycotoxins by dielectric barrier discharge cold plasma. Food Control 117:107333. https://doi.org/10.1016/j.foodcont.2020.107333 Vaseghi N, Bayat M, Chaichi Nosrati A, Ghorannevis M, Hashemi JJIJ, o. M., & Microbiology, C. (2017) Plasma jet impacts on Citrinin production in isolates belonging to Penicillium Spp. Int J Mol Clin Microbiol 7(2):875–889 Lee KH, Kim H-J, Woo KS, Jo C, Kim J-K, Kim SH, ... Kim WH (2016) Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT 73:442–447. https://doi.org/10.1016/j.lwt.2016.06.055 Suresh D, Manjunatha H, Srinivasan K (2007) Effect of heat processing of spices on the concentrations of their bioactive principles: Turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). J Food Compos Anal 20(3–4):346–351. https://doi.org/10.1016/j.jfca.2006.10.002 Kopuk B, Gunes R, Palabiyik I (2022) Cold plasma modification of food macromolecules and effects on related products. Food Chem 382:132356. https://doi.org/10.1016/j.foodchem.2022.132356 Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technol 99(11):5104–5109. https://doi.org/10.1016/j.biortech.2007.09.076 Wiktor A, Hrycak B, Jasinski M, Rybak K, Kieliszek M, Krasniewska K, Witrowa-Rajchert D (2020) Impact of atmospheric pressure microwave plasma treatment on quality of selected spices. Appl Sci-Basel 10(19):6815. https://doi.org/10.3390/app10196815 Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID (2016) Cold plasma: A new technology to modify wheat flour functionality. Food Chem 202:247–253. https://doi.org/10.1016/j.foodchem.2016.01.113 Choi S, Puligundla P, Mok C (2017) Effect of corona discharge plasma on microbial decontamination of dried squid shreds including physico-chemical and sensory evaluation. LWT 75:323–328. https://doi.org/10.1016/j.lwt.2016.08.063 Lee KH, Woo KS, Yong HI, Jo C, Lee SK, Lee BW, Kim H-J (2018) Assessment of microbial safety and quality changes of brown and white cooked rice treated with atmospheric pressure plasma. Food Sci Biotechnol 27(3):661–667. https://doi.org/10.1007/s10068-017-0297-6 Foligni R, Mannozzi C, Ismaiel L, Capelli F, Laurita R, Tappi S, ... Mozzon M (2022) Impact of cold atmospheric plasma (CAP) treatments on the oxidation of pistachio kernel lipids. Foods 11(3):419. https://doi.org/10.3390/foods11030419 Misra NN, Kaur S, Tiwari BK, Kaur A, Singh N, Cullen PJ (2015) Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids 44:115–121. https://doi.org/10.1016/j.foodhyd.2014.08.019 Zare L, Mollakhalili-Meybodi N, Fallahzadeh H, Arab M (2022) Effect of atmospheric pressure cold plasma (ACP) treatment on the technological characteristics of quinoa flour. LWT-Food Sci Technol 155:112898. https://doi.org/10.1016/j.lwt.2021.112898 Wu T-Y, Chang C-R, Chang T-J, Chang Y-J, Liew Y, Chau C-F (2019) Changes in physicochemical properties of corn starch upon modifications by atmospheric pressure plasma jet. Food Chem 283:46–51. https://doi.org/10.1016/j.foodchem.2019.01.043 Bie P, Pu H, Zhang B, Su J, Chen L, Li X (2016) Structural characteristics and rheological properties of plasma-treated starch. Innov Food Sci Emerg Technol 34:196–204. https://doi.org/10.1016/j.ifset.2015.11.019 Okyere AY, Boakye PG, Bertoft E, Annor GA (2022) Structural characterization and enzymatic hydrolysis of radio frequency cold plasma treated starches. J Food Sci 87(2):686–698. https://doi.org/10.1111/1750-3841.16037 Alves Filho EG, Silva LMA, Oiram Filho F, Rodrigues S, Fernandes FAN, Gallao MI, ... de Brito ES (2019) Cold plasma processing effect on cashew nuts composition and allergenicity. Food Res Int 125:108621. https://doi.org/10.1016/j.foodres.2019.108621 Gavahian M, Chu Y-H, Mousavi Khaneghah A, Barba FJ, Misra NN (2018) A critical analysis of the cold plasma induced lipid oxidation in foods. Trends Food Sci Technol 77:32–41. https://doi.org/10.1016/j.tifs.2018.04.009 Basak S, Annapure US (2022) Recent trends in the application of cold plasma for the modification of plant proteins - A review. Future Foods 5:100119. https://doi.org/10.1016/j.fufo.2022.100119 Rosell CM, Wang J, Aja S, Bean S, Lookhart G (2003) Wheat flour proteins as affected by transglutaminase and glucose oxidase. Cereal Chem 80(1):52–55. https://doi.org/10.1094/cchem.2003.80.1.52 Zhang S, Huang W, Feizollahi E, Roopesh MS, Chen L (2021) Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study. Innov Food Sci Emerg Technol 67:102567. https://doi.org/10.1016/j.ifset.2020.102567 Ge X, Shen H, Su C, Zhang B, Zhang Q, Jiang H, Li W (2021) The improving effects of cold plasma on multi-scale structure, physicochemical and digestive properties of dry heated red adzuki bean starch. Food Chem 349:129159. https://doi.org/10.1016/j.foodchem.2021.129159 Kalaivendan RGT, Mishra A, Eazhumalai G, Annapure US (2022) Effect of atmospheric pressure non-thermal pin to plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. Int J Biol Macromol 196:63–71. https://doi.org/10.1016/j.ijbiomac.2021.12.013 Sun X, Saleh ASM, Sun Z, Ge X, Shen H, Zhang Q, ... Li W (2022). Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments. LWT-Food Sci Technol 153:112483. https://doi.org/10.1016/j.lwt.2021.112483 Sun X, Sun Z, Guo Y, Zhao J, Zhao J, Ge X, ... Yan W (2021) Effect of twin-xuscrew extrusion combined with cold plasma on multi-scale structure, physicochemical properties, and digestibility of potato starches. Innov Food Sci Emerg Technol 74:102855. https://doi.org/10.1016/j.ifset.2021.102855 Adhikari B, Adhikari M, Park G (2020) The effects of plasma on plant growth, development, and sustainability. Appl Sci-Basel 10(17):6045. https://doi.org/10.3390/app10176045 Holonec R, Viman O, Morar IM, Singeorzan S, Scheau C, Vlasin HD, ... Truta AM (2021) Non-chemical treatments to improve the seeds germination and plantlets growth of sessile oak. Not Bot Horti Agrobot Cluj-Napoca 49(3):12401. https://doi.org/10.15835/nbha49312401 Guragain RP, Baniya HB, Pradhan SP, Pandey BP, Subedi DP (2021) Influence of plasma-activated water (PAW) on the germination of radish, fenugreek, and pea seeds. AIP Adv 11(12):125304. https://doi.org/10.1063/5.0070800 Lotfy K, Al-Harbi NA, Abd El-Raheem H (2019) Cold atmospheric pressure nitrogen plasma jet for enhancement germination of wheat seeds. Plasma Chem Plasma Process 39(4):897–912. https://doi.org/10.1007/s11090-019-09969-6 Šerá B, Scholtz V, Jirešová J, Khun J, Julák J, Šerý M (2021) Effects of non-thermal plasma treatment on seed germination and early growth of leguminous plants—A Review. 10(8):1616. https://www.mdpi.com/2223-7747/10/8/1616 Sera B, Sery M, Zahoranova A, Tomekova J (2021) Germination improvement of three pine species (Pinus) after diffuse coplanar surface barrier discharge plasma treatment. Plasma Chem Plasma Process 41(1):211–226. https://doi.org/10.1007/s11090-020-10128-5 Waskow A, Howling A, Furno I (2021) Mechanisms of plasma-seed treatments as a potential seed processing technology. Front Phys 9:617345. https://doi.org/10.3389/fphy.2021.617345 Ahmed N, Shahid M, Siow KS, Wee MFMR, Haron FF, Patra A, Fazry S (2022) Germination and growth improvement of papaya utilizing oxygen (O-2) plasma treatment. J Phys D-Appl Phys 55(25):255205. https://doi.org/10.1088/1361-6463/ac6068 Perez Piza MC, Prevosto L, Zilli C, Cejas E, Kelly H, Balestrasse K (2018) Effects of non-thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innov Food Sci Emerg Technol 49:82–91. https://doi.org/10.1016/j.ifset.2018.07.009 Holc M, Mozetic M, Recek N, Primc G, Vesel A, Zaplotnik R, Gselman P (2021) Wettability increase in plasma-treated agricultural seeds and its relation to germination improvement. Agronomy-Basel 11(8):1467. https://doi.org/10.3390/agronomy11081467 Los A, Ziuzina D, Akkermans S, Boehm D, Cullen PJ, Van Impe J, Bourke P (2018) Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res Int 106:509–521. https://doi.org/10.1016/j.foodres.2018.01.009 Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741. https://doi.org/10.1038/srep00741 Gomez-Ramierez A, Lopez-Santos C, Cantos M, Garcia JL, Molina R, Cotrino J, ... Gonzalez-Elipe AR (2017) Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Sci Rep 7:5924. https://doi.org/10.1038/s41598-017-06164-5 Recek N, Holc M, Vesel A, Zaplotnik R, Gselman P, Mozetic M, Primc G (2021) Germination of Phaseolus vulgaris L. seeds after a short treatment with a powerful RF plasma. Int J Mol Sci 22(13):6672. https://doi.org/10.3390/ijms22136672 de Groot GJJB, Hundt A, Murphy AB, Bange MP, Mai-Prochnow A (2018) Cold plasma treatment for cotton seed germination improvement. Sci Rep 8:14372. https://doi.org/10.1038/s41598-018-32692-9 Jiang J, Lu Y, Li J, Li L, He X, Shao H, Dong Y (2014) Effect of seed treatment by cold plasma on the resistance of tomato to ralstonia solanacearum (Bacterial Wilt). Plos One 9(5):Article e97753. https://doi.org/10.1371/journal.pone.0097753 Ji S-H, Choi K-H, Pengkit A, Im JS, Kim JS, Kim YH, Park G (2016) Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Arch Biochem Biophys 605:117–128. https://doi.org/10.1016/j.abb.2016.02.028 Mildaziene V, Aleknaviciute V, Zukiene R, Pauzaite G, Nauciene Z, Filatova I, ... Baniulis D (2019) Treatment of Common Sunflower (Helianthus annus L.) Seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. Sci Rep 9:6437. https://doi.org/10.1038/s41598-019-42893-5 Ussenov YA, Akildinova A, Kuanbaevich BA, Serikovna KA, Gabdullin M, Dosbolayev M, Ramazanov T (2022) The Effect of Non-Thermal Atmospheric pressure plasma treatment of wheat seeds on germination parameters and α-amylase enzyme activity. IEEE Trans Plasma Sci 50(2):330–340. https://doi.org/10.1109/TPS.2022.3145831 Li L, Chen J, Wang H, Guo H, Li D, Li J, ... Zong J (2021) Cold plasma treatment improves seed germination and accelerates the establishment of centipedegrass. Crop Sci 61(4):2827–2836, Article 1–10. https://doi.org/10.1002/csc2.20513 Shashikanthalu SP, Ramireddy L, Radhakrishnan M (2020) Stimulation of the germination and seedling growth of Cuminum cyminum L. seeds by cold plasma. J Appl Res Med Aroma Plants 18:Article 100259. https://doi.org/10.1016/j.jarmap.2020.100259 Kitazaki S, Sarinont T, Koga K, Hayashi N, Shiratani M (2014) Plasma induced long-term growth enhancement of Raphanus sativus L. using combinatorial atmospheric air dielectric barrier discharge plasmas. Curr Appl Phys 14:S149–S153. https://doi.org/10.1016/j.cap.2013.11.056 Sarinont T, Amano T, Attri P, Koga K, Hayashi N, Shiratani M (2016) Effects of plasma irradiation using various feeding gases on growth of Raphanus sativus L. Arch Biochem Biophys 605:129–140. https://doi.org/10.1016/j.abb.2016.03.024 Jiang J, He X, Li L, Li J, Shao H, Xu Q, ... Dong Y (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16(1). https://doi.org/10.1088/1009-0630/16/1/12 Li L, Li J, Shao H, Dong Y (2018) Effects of low-vacuum helium cold plasma treatment on seed germination, plant growth and yield of oilseed rape. Plasma Sci Technol 20(9):Article 095502. https://doi.org/10.1088/2058-6272/aac3d0 Mravlje J, Regvar M, Staric P, Mozetic M, Vogel-Mikus K (2021) Cold plasma affects germination and fungal community structure of buckwheat seeds. Plants-Basel 10(5):Article 851. https://doi.org/10.3390/plants10050851 Cullen PJ, Lalor J, Scally L, Boehm D, Milosavljevic V, Bourke P, Keener K (2018) Translation of plasma technology from the lab to the food industry. Plasma Process Polym 15(2):Article e1700085. https://doi.org/10.1002/ppap.201700085 Gao Y, Francis K, Zhang X (2022) Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res Int 157:Article 111246. https://doi.org/10.1016/j.foodres.2022.111246