The ANHEQ Evaluation Criteria: Introducing Reliable Rating Scales for Assessing Nordic Hamstring Exercise Quality
Tóm tắt
The Nordic Hamstring Exercise (NHE) is very popular for selective eccentric hamstring strengthening. However, NHE-related research is hindered by insufficient details about implementation and reporting. Available tools to assess study quality (e.g., PEDro or TESTEX scale) are too unspecific to account for the specific demands of NHE. Therefore, this study aimed to introduce two rating scales for Assessing Nordic Hamstring Exercise Quality (ANHEQ) of assessment and intervention studies.
Eighteen graduated sports scientists, sports physiotherapists and elite coaches with scientific experience independently evaluated the quality of published NHE studies via ANHEQ scales, each comprising eight items and a maximal 13-point score. Inter-rater agreement was analyzed by using criterion-based reference values, while Krippendorff´s alpha determined inter-rater reliability. Systematic differences of the summated ANHEQ scores were determined using Friedman tests. Inter-rater agreement was 87 ± 5% for NHE assessments and 88 ± 6% for interventions with single items ranging from 71 to 100%. Alpha values for inter-rater reliability ranged from fair (.250) to perfect (1.00) depending on the item. Total ANHEQ scores revealed coefficients of .829 (almost perfect) and .772 (substantial) without significant inter-rater differences (p = .292). The ANHEQ scales are suitable tools to rate NHE execution quality and data presentation. They facilitate a comprehensive review of NHE-related evidence and potentially improve the design and reporting of future NHE studies.
Tài liệu tham khảo
Al Attar WS, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of injury prevention programs that include the Nordic Hamstring Exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 2017;47(5):907–16.
Opar DA, Serpell BG. Is there a potential relationship between prior hamstring strain injury and increased risk for future anterior cruciate ligament injury? Arch Phys Med Rehabil. 2014;95(2):401–5.
Taylor GH. Health by exercise. New York: American Book Exchange; 1880.
Ebben WP. Hamstring activation during lower body resistance training exercises. Int J Sports Physiol Perform. 2009;4(1):84–96.
Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med. 2016;50(23):1467–72.
Hegyi A, Lahti J, Giacomo JP, Gerus P, Cronin NJ, Morin JB. Impact of hip flexion angle on unilateral and bilateral Nordic Hamstring Exercise torque and high-density electromyography activity. J Orthop Sports Phys Ther. 2019;49(8):584–92.
Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663–72.
Ditroilo M, De Vito G, Delahunt E. Kinematic and electromyographic analysis of the Nordic Hamstring Exercise. J Electromyogr Kinesiol. 2013;23(5):1111–8.
Alt T, Nodler YT, Severin J, Knicker AJ, Strüder HK. Velocity-specific and time-dependent adaptations following a standardized Nordic Hamstring Exercise training. Scand J Med Sci Sports. 2018;28(1):65–76.
Alt T, Knicker AJ, Nodler YT, Strüder HK. Assisted or unassisted Nordic Hamstring Exercise? Resistance exercise determinants at a glance. Sports Biomech. 2021;Epub ahead of print.
van den Tillaar R, Solheim JA, Bencke J. Comparison of hamstring muscle activation during high-speed running and various hamstring strengthening exercises. Int J Sports Phys Ther. 2017;12(5):718–27.
Marshall PW, Lovell R, Knox MF, Brennan SL, Siegler JC. Hamstring fatigue and muscle activation changes during six sets of Nordic Hamstring Exercise in amateur soccer players. J Strength Cond Res. 2015;29(11):3124–33.
Burrows AP, Cleather D, Mahaffey R, Cimadoro G. Kinetic and electromyographic responses to traditional and assisted Nordic Hamstring Exercise. J Strength Cond Res. 2020;34(10):2715–24.
Alt T, Severin J, Komnik I, Nodler YT, Benker R, Knicker AJ, et al. Nordic Hamstring Exercise training induces improved lower-limb swing phase mechanics and sustained strength preservation in sprinters. Scand J Med Sci Sports. 2021;31(4):826–38.
Matthews MJ, Heron K, Todd S, Tomlinson A, Jones P, Delextrat A, et al. Strength and endurance training reduces the loss of eccentric hamstring torque observed after soccer specific fatigue. Phys Ther Sport. 2017;25:39–46.
Matthews MJ, Jones P, Cohen D, Matthews H. The Assisted Nordic Hamstring Curl. Strength Cond J. 2015;37(1):84–7.
Sarabon N, Marusic J, Markovic G, Kozinc Z. Kinematic and electromyographic analysis of variations in Nordic hamstring exercise. PLoS ONE. 2019;14(10):e0223437.
Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.
Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V, et al. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc. 2015;13(1):9–18.
Mjolsnes R, Arnason A, Osthagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14(5):311–7.
Wiesinger HP, Gressenbauer C, Kosters A, Scharinger M, Muller E. Device and method matter: a critical evaluation of eccentric hamstring muscle strength assessments. Scand J Med Sci Sports. 2020;30(2):217–26.
Opar DA, Piatkowski T, Williams MD, Shield AJ. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636–40.
Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83.
Severo-Silveira L, Dornelles MP, Lima ESFX, Marchiori CL, Medeiros TM, Pappas E, et al. Progressive workload periodization maximizes effects of nordic hamstring exercise on muscle injury risk factors. J Strength Cond Res. 2018;Epub ahead of print.
Jakobsen JR, Mackey AL, Knudsen AB, Koch M, Kjaer M, Krogsgaard MR. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training. Scand J Med Sci Sports. 2017;27(12):1547–59.
Gwet KL. Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement Among Multiple Raters. 4th Edition ed. Advanced Analytics, LLC. 2014.
Gisev N, Bell JS, Chen TF. Interrater agreement and interrater reliability: key concepts, approaches, and applications. Res Social Adm Pharm. 2013;9(3):330–8.
Krippendorff K. Reliability in content analysis. Hum Commun Res. 2004;30(3):411–33.
Fleiss JL, Cohen J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Measur. 1973;33(3):613–9.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.
Owen AL, del Wong P, Dellal A, Paul DJ, Orhant E, Collie S. Effect of an injury prevention program on muscle injuries in elite professional soccer. J Strength Cond Res. 2013;27(12):3275–85.
Sebelien C, Stiller CH, Maher SF, Qu X. Effects of implementing Nordic hamstring exercises for semi-professional soccer players in Akershus. Norway Orthop Phys Ther Prac. 2014;26(2):90–7.
Engebretsen AH, Myklebust G, Holme I, Engebretsen L, Bahr R. Prevention of injuries among male soccer players: a prospective, randomized intervention study targeting players with previous injuries or reduced function. Am J Sports Med. 2008;36(6):1052–60.
Lovell R, Whalan M, Marshall PWM, Sampson JA, Siegler JC, Buchheit M. Scheduling of eccentric lower limb injury prevention exercises during the soccer micro-cycle: Which day of the week? Scand J Med Sci Sports. 2018;28(10):2216–25.
de Oliveira NT, Medeiros TM, Vianna KB, Oliveira GDS, de Araujo Ribeiro-Alvares JB, Baroni BM. A four-week training program with the Nordic Hamstring Exercise during preseason increases eccentric strength of male soccer players. Int J Sports Phys Ther. 2020;15(4):571–8.
Lodge C, Tobin D, Brian OR, Thorborg K. Reliability and validity of a new eccentric hamstring strength measurement device. Arch Rehabil Res Clin Trans. 2020;2(1):100034.
McGrath TM, Hulin BT, Pickworth N, Clarke A, Timmins RG. Determinants of hamstring fascicle length in professional rugby league athletes. J Sci Med Sport. 2020;23(5):524–8.
Bohm S, Mersmann F, Arampatzis A. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open. 2015;1(1):7.
Pollard CW, Opar DA, Williams MD, Bourne MN, Timmins RG. Razor hamstring curl and Nordic hamstring exercise architectural adaptations: Impact of exercise selection and intensity. Scand J Med Sci Sports. 2019;29:706.
Medicine ACoS. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.
Larson GDJ, Potteiger JA. A comparison of three different rest intervals between multiple squat bouts. J Strength Condit Res. 1997;11(2):115–8.
Smilios I, Pilianidis T, Karamouzis M, Tokmakidis SP. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc. 2003;35(4):644–54.
Gabbe BJ, Branson R, Bennell KL. A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. J Sci Med Sport. 2006;9(1–2):103–9.
Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97(6):643–63.