The 30th summer school of the Research Community for Mechanisms of Mutations

Genes and Environment - Tập 40 - Trang 1-3 - 2018
Takashi Yagi1, Masanobu Kawanishi1, Kazuhiko Takahashi2
1Graduate School of Science, Osaka Prefecture University, Osaka, Japan
2Yokohama University of Pharmacy, Yokohama, Japan

Tóm tắt

The 30th summer school of the Research Community for Mechanisms of Mutations was held on September 2nd-3rd, 2017 at the Kyoto Prefecture Seminar House. The Community celebrated the 30th anniversary of the school this year. The Community has been organizing a meeting once a year since it was founded as the Society for Mechanisms of Anti-mutagenesis and Anti-carcinogenesis Studies in 1987. The Society was reorganized to the current Community in 2006, and since then has a summer school aimed at providing information on mutation research frontiers and exchanging scientific information among young scientists such as graduate students, post-doctoral fellows, and assistant professors. This year, three eminent scientists were invited to discuss radiation cluster damage, the evolution of snake venom, and colibactin and colorectal cancer, while 15 participants presented their own research. Fifty-six participants joined in enthusiastic discussions and acquired new scientific knowledge.

Tài liệu tham khảo

Yagi T. Genes and environment: providing open access to environmental mutagenesis and genomics studies for global cooperation. Genes Environ. 2015;37:4. Yagi T. A perspective of Genes and Environment for the development of environmental mutagen research in Asia. Genes Environ. 2017;39:23. The Research Community for Mechanisms of Mutations. (in Japanese) http://www.j-ems.org/groups/heni.html. Accessed 10 October 2017. Antimutagenesis and anticarcinogenesis mechanisms II. Proceedings of the second international conference. December 4-9, 1988, Ohito, Japan. Basic Life Sci. 1990;52:1–485. Kuroda Y, Shankel DM, Waters MD, editors. Antimutagenesis and anticarcinogenesis mechanisms II. Plenum Press, New York and London; 1990. DOI: https://doi.org/10.1007/978-1-4615-9661-8. e-ISBN-13: 978–1–4615-9561-8. Seo T, Sakon T, Nakazawa S, Nishioka A, Watanabe K, Matsumoto K, Akasaka M, Shioi N, Sawada H, Araki S. Haemorrhagic snake venom metalloproteases and human ADAMs cleave LRP5/6, which disrupts cell-cell adhesions in vitro and induces haemorrhage in vivo. FEBS J. 2017;284:1657–71. Shioi N, Nishijima A, Terada S. Flavorase, a novel non-haemorrhagic metalloproteinase in Protobothrops flavoviridis venom, is a target molecule of small serum protein-3. J Biochem. 2015;158:37–48. Balskus EP. Colibactin: understanding an elusive gut bacterial genotoxin. Nat Prod Rep. 2015;32:1534–40. Taieb F, Petit C, Nougayrède JP, Oswald E. The enterobacterial genotoxins: cytolethal distending toxin and colibactin. EcoSal Plus. 2016;7(1). https://doi.org/10.1128/ecosalplus.ESP-0008-2016. Akamatsu K, Shikazono N, Saito T. Localization estimation of ionizing radiation-induced abasic sites in DNA in the solid state using fluorescence resonance energy transfer. Radiat Res. 2015;183:105–13. Akamatsu K, Shikazono N, Saito T. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy. Anal Biochem. 2017;536:78–89.