The τ‐function of the universal whitham hierarchy, matrix models and topological field theories

Communications on Pure and Applied Mathematics - Tập 47 Số 4 - Trang 437-475 - 1994
I. M. Krichever1
1Landau Institute for Theoretical Physics

Tóm tắt

Abstract

The universal Whitham hierarchy is considered from the viewpoint of topological field theories. The τ‐function is defined for this hierarchy. It is proved that the algebraic orbits of Whitham hierarchy can be identified with various topological matter models coupled with topological gravity. © 1994 John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

10.1016/0370-2693(90)91736-U

10.1016/0370-2693(90)90818-Q

10.1016/0550-3213(85)90335-9

Dobrokhotov S. Yu., 1982, Soviet Scientific Reviews, Math. Phys. Rev. OPA Amsterdam, 3, 221

10.1016/0370-2693(90)91716-O

10.1016/0550-3213(90)90522-F

Dubrovin B. A., 1976, Nonlinear equations of Korteweg‐de Vries type, finite zone linear operators, and Abelian varieties, Uspekhi Mat. Nauk, 31, 55

Dubrovin B. A., 1983, The Hamiltonian formalism of one dimensional systems of hydrodynamic type and Bogolyubov‐Whitham averaging method, Sov. Math. Doklady, 27, 665

10.1070/RM1989v044n06ABEH002300

Dubrovin B. A. Geometry of Hamiltonian Evolutionary Systems Bibliopolis Naples 1991.

Dubrovin B. A. Differential geometry of moduli spaces and ifs application to soliton equations and to topological conformal field theory Preprint No. 117 Scuola Normale Superiore Pisa November1991.

Dubrovin B. A. Integrable systems in topological field theory preprint INFN‐NA‐A‐IV‐91/26 Napoli 1991.

10.1007/BF02099286

Eguchi T. andYang S.‐K. N = 2 superconformal models as topological field theories preprint Tokyo University UT‐564 1990.

10.1002/cpa.3160330605

10.1007/3-540-13911-7_73

Fukuma M. andKawai H. Continuum Schwinger‐Dyson equations and universal structures in two‐dimensional quantum gravity preprint Tokyo University UT‐562 May1990.

10.1007/BF02099014

10.1103/PhysRevLett.64.127

10.1016/0550-3213(90)90450-R

Gurevich A., 1973, Non‐stationary structure of a collisionless shock wave, JETP, 65, 590

10.1016/0370-2693(85)91011-1

10.1016/0370-2693(85)90669-0

10.1007/BF01079591

10.1007/BF02099526

Krichever I. M., 1976, The algebraic‐geometrical construction of Zakharov‐Shabat equations and their periodic solutions, Dokl. Acad. Nauk SSSR, 227, 291

Krichever I. M., 1977, Integration of nonlinear equations by methods of algebraic geometry (in Russian), Funkts. Anal. Prilozh., 11, 15

10.1007/BF01135528

Krichever I. M., 1988, Averaging method for two‐dimensional integrable equations, Funkts. Anal. Prilozh., 22, 37

Krichever I. M., 1989, Spectral theory of two‐dimensional periodic operators and its applications, Uspekhi Mat. Nauk, 44, 121

10.1007/BF02099016

Krichever I. M. Whitham theory for integrable systems and topological field theories in: Proceedings of the Summer Cargese School July 1991 to appear.

10.1016/0550-3213(88)90094-6

10.1016/0550-3213(89)90474-4

Li K. Topological gravity with minimal matter Caltech preprint CALT‐68‐1662.

Makeenko Yu. Loop equations in matrix models and in 2D quantum gravity. submitted toMod. Phys. Lett. A.

10.1016/0370-2693(89)90074-9

10.1016/0550-3213(89)90470-7

10.1016/0550-3213(90)90050-N

10.1070/RM1985v040n04ABEH003615

Saveliev M. On the integrability problem of the continuous long wave approximation of the Toda lattice preprint ENSL Lyon 1992.

Takasaki K. andTakebe K. SDiff(2) Toda equation‐hierarchy tau‐function and symmetries preprint RIMS‐790 Kyoto.

Takebe K. Area‐preserving diffeomorphisms and nonlinear integrable systems in: proceedings of Topological and Geometrical Methods in Field Theory May1991 Turku Finland.

Tsarev S., 1990, The geometry of Hamiltonian systems of hydrodynamic type, Izvestiya USSR, ser. matem., 54, 96

10.1016/0370-2693(89)90473-5

Verlinder E. andVerlinder H. A solution of two‐dimensional topological quantum gravity preprint IASSNS‐HEP‐90/40 PUPT‐1176 (1990).

10.1016/0550-3213(90)90449-N

10.4310/SDG.1990.v1.n1.a5

10.1007/BF01086549

Zakharov V., 1980, Soliton Theory