Các bài kiểm tra và vấn đề của mô hình tiêu chuẩn trong vũ trụ học

Foundations of Physics - Tập 47 - Trang 711-768 - 2017
Martín López-Corredoira1,2
1Instituto de Astrofísica de Canarias, La Laguna, Spain
2Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Spain

Tóm tắt

Các nền tảng chính của mô hình tiêu chuẩn \(\Lambda \)CDM trong vũ trụ học là: (1) độ đỏ của các thiên hà là do sự mở rộng của Vũ trụ cộng với chuyển động kỳ dị; (2) bức xạ vũ trụ vi sóng và các sự không đồng nhất của nó phát sinh từ Vũ trụ nguyên thủy năng lượng cao khi vật chất và bức xạ trở nên tách rời; (3) mẫu độ phong phú của các nguyên tố nhẹ được giải thích theo thuật ngữ của sự tổng hợp hạt nhân nguyên thủy; và (4) sự hình thành và tiến hóa của các thiên hà chỉ có thể được giải thích theo thuật ngữ của trọng lực trong một kịch bản bao gồm lạm phát + vật chất tối + năng lượng tối. Nhiều thử nghiệm đã được thực hiện về những ý tưởng này và mặc dù mô hình tiêu chuẩn hoạt động khá tốt trong việc khớp với nhiều quan sát, vẫn có nhiều dữ liệu thể hiện những điều đáng chú ý mà cần phải được hiểu rõ hơn. Trong bài báo này, tôi cung cấp một cái nhìn tổng quan về những thử nghiệm và vấn đề này, cũng như một số ví dụ về các mô hình thay thế.

Từ khóa

#vũ trụ học #mô hình tiêu chuẩn #vật chất tối #năng lượng tối #bức xạ vũ trụ vi sóng

Tài liệu tham khảo

Van Flandern, T.: Dark Matter, Missing Planets and New Comets. North Atlantic Books, Berkeley (1993)

Baryshev, YuV: Field fractal cosmological model as an example of practical cosmology approach. In: Baryshev, YuV, Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology, 1, pp. 60–67. TIN, St.-Petersburg (2008)

Bondi, H.: Cosmology, 2nd edn. Cambridge University Press, London (1961)

Lemaître, G.: Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. A47, 49–59 (1927) (Translated into English in: Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Astron. Soc. 91, 483–490 (1931))

Zwicky, F.: On the red shift of spectral lines through interstellar space. Proc. Natl. Acad. Sci. 15, 773–779 (1929)

Brynjolfsson, A.: Redshift of photons penetrating a hot plasma. arXiv:astro-ph/0401420 (2004)

Joos, C., Lutz, J.: Quantum redshift. Paper presented at the Crisis in Cosmology Conference-I, Moncao, Portugal 23–25 June (2005)

Crawford, D.: Curvature Cosmology. BrownWalker Press, Boca Raton (2006)

Crawford, D.: Observational evidence favors a static universe (part III). J. Cosmol. 13, 4000–4057 (2011)

Ivanov, M.A.: Another origin of cosmological redshifts. arXiv:astro-ph/0405083 (2004)

Roscoe, D.: Maxwells equations: new light on old problems. Apeiron 13, 206–239 (2006)

Mosquera Cuesta, H.J., Salim, J.M., Novello,M.: Cosmological redshift and nonlinear electrodynamics propagation of photons from distant sources. arXiv:0710.5188 (2007)

Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. II. Dover, New York (1954)

Monti, R.: The electric conductivity of background space. In: Kostro, L., Posiewnik, A., Pykacz, J., Zukowski, M. (eds.) Problems in Quantum Physics, Gdansky 87—Recent and Future Experiments and Interpretations, p. 640. World Scientific, Singapore (1988)

von Nernst, W.: The Structure of the Universe in Light of our Research. Jules Springer, Berlin (1921)

Garaimov, V.I.: Time and entropy. In: Holt, S.S., Reynolds, C. S. (eds.) The emergence of cosmic structure (AIP Conf. Proc. 666), pp. 361–364. AIP, Melville (2003)

Mérat, P., Pecker, J.-C., Vigier, J.-P., Yourgrau, W.: Observed deflation of light by the sun as a function of solar distance. Astron. Astrophys. 32, 471–475 (1974)

Mérat, P., Pecker, J.-C., Vigier, J.-P.: Possible interpretation of an anomalous redsbift observed on the 2292 MHz line emitted by pioneer-6 in the close vicinity of the solar limb. Astron. Astrophys. 30, 167–174 (1974)

Molaro, P., Levshakov, S.A., Dessauges-Zavadsky, M., D’Odorico, S.: The cosmic microwave background radiation temperature at \(z_{{\rm abs}}=3.025\) toward QSO 0347–3819. Astron. Astrophys. 381, L64–L67 (2002)

Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C., López, S.: The evolution of the cosmic microwave background temperature. Measurements of \(T_{\rm CMB}\) at high redshift from carbon monoxide excitation. Astron. Astrophys 526, L7 (2011)

Sato, M., Reid, M.J., Menten, K.M., Carilli, C.L.: On measuring the cosmic microwave background temperature at redshift 0.89. Astrophys. J. 764, 132 (2013)

Goldhaber, G., Groom, D.E., Kim, A., et al.: Timescale stretch parameterization of type ia supernova B-band light curves. Astrophys. J. 558, 359–368 (2001)

Brynjolfsson, A.: Plasma redshift, time dilation, and supernovas Ia. arXiv:astro-ph/0406437 (2004)

LaViolette, P.A.: Subquantum Kinetics: The Alchemy of Creation, 4th edn. Starlane Publication, Niskayana, NY (2012)

Crawford, D.: No evidence of time dilation in gamma-ray burst data. arXiv:0901.4169 (2009)

Lerner, E. J.: Tolman test from \(z=0.1\) to \(z=5.5\): preliminary results challenge the expanding universe model. In: Potter, F. (ed.) Second Crisis in Cosmology Conference (ASP Conf. Ser. 413), pp. 12–23. ASP, St. Francisco (2009)

López-Corredoira, M.: Angular-size test on the expansion of the Universe. Int. J. Mod. Phys. D 19, 245–291 (2010)

Lerner, E.: Surface brightness of galaxies and the evidence against the concordance model. Paper presented at the observational anomalies challenging the Lambda-CDM cosmological model (Special Session 2, EWASS 2015), Tenerife, Spain 22 June 2015. http://www.iac.es/galeria/martinlc/EWASS2015/1339

López-Corredoira, M.: Alcock-Paczyński cosmological test. Astrophys. J. 781, 96 (2014)

Melia, F., López-Corredoira, M.: Alcock-Paczyński cosmological test with model-independent BAO data. Int. J. Mod. Phys. D 26, 1750055 (2017)

Arp, H.C.: QSOs, Redshifts and Controversies. Interstellar Media, Berkeley (1987)

Burbidge, G.R.: Noncosmological Redshifts. Publ. Astron. Soc. Pac. 113, 899–902 (2001)

López-Corredoira, M.: Apparent discordant redshift QSO-galaxy associations. In: Harutyunian, H.A., Mickaelian, A.M., Terzian, Y. (eds.) Evolution of Cosmic Objects Through Their Physical Activity, pp. 196–205. Gitutyun Publ. House of NAS RA, Yerevan (2010)

Harutyunian, H.A., Nikogossian, E.H.: Quasars in regions of rich clusters of galaxies. Astrophysics 43(4), 391–402 (2000)

Burbidge, G., Napier, W.M.: Associations of high-redshift quasi-stellar objects with active, low-redshift spiral galaxies. Astrophys. J. 706, 657–664 (2009)

Taganov, I.N.: Quantum Cosmology: Deceleration of Time. TIN, St.-Petersburg (2008)

Primack, J.R.: Precision cosmology. New Astron. Rev. 49, 25–34 (2005)

Gamow, G.: The expanding universe and the origin of galaxies. Kgl. Danske Videnskab Selskab Mat. Fys. Medd. 27(10), 3–15 (1953)

Van Flandern, T.: Is the microwave radiation really from the big bang ’fireball’? Reflector (Astron. League Newsletter), XLV, 4 (1993)

Shmaonov, T.: Pribori i Tekhnika Experimenta (Russia), vol. 1, p. 83 (1957)

Herzberg, G.: Spectra of Diatomic Molecules. Van Nostrand, New York (1950)

Assis, A.K.T., Neves, M.C.D.: History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron 2, 79–84 (1995)

Meyers, R.: A brief history of competing ideologies in cosmology and evidence for non-cosmological redshifts as a case for alternative theoretical interpretations in cosmology. PhD thesis, University of Western Sydney, Sydney (2003)

Bondi, H., Gold, T., Hoyle, F.: Black giant stars. Obs. Mag. 75, 80–81 (1955)

Soberman, R.K., Dubin, M.: Dark matter is baryons. arXiv:astro-ph/0107550 (2001)

Alfonso-Faus, A., Fullana i Alfonso, M.J.F.: Sources of cosmic microwave radiation and dark matter identified: millimeter black holes (m.b.h.). arXiv:1004.2251 (2010)

Clube, S.V.M.: The material vacuum. Mon. Not. R. Astron. Soc. 193, 385–397 (1980)

Mao, M.Y., Huynh, M.T., Norris, R.P., Dickinson, M., Frayer, M., Helou, G., Monkiewick, J.A.: No evidence for evolution in the far-infrared-radio correlation out to z 2 in the extended chandra deep field south. Astrophys. J. 731, 79 (2011)

Crawford, D.: Observational evidence favors a static universe (part II). J. Cosmol. 13, 3947–3999 (2011)

Navia, C.E., Augusto, C.R.A., Tsui, K.H.: On the ultra high energy cosmic rays and the origin of the cosmic microwave background radiation. arXiv:0707.1896 (2007)

Larson, D., Dunkley, J., Hinshaw, G., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. Ser. 192, 16 (2011)

Jefferys, H., Berger, J.: Ockham’s Razor and Bayesian analysis. Am. Sci. 80(1), 64–72 (1992)

Gil, F.J.: Modelos cosmológicos: ¿Ficciones útiles o descripciones realistas del universo? Thémata 40, 117–146 (2008)

Walker, M., Ohishi, M., Mori, M.: Microwave anisotropies from the Galactic halo. arXiv:astro-ph/0210483 (2002)

Ferreira, P.G., Magueijo, J., Górski, K.M.: Evidence for non-Gaussianity in the COBE DMR 4 year sky maps. Astrophys. J. Lett. 503, L1–L4 (1998)

Jeong, E., Smoot, G.F.: Probing non-Gaussianity in the cosmic microwave background anisotropies: one point distribution function. arXiv:0710.2371 (2007)

Bennett, C.L., Hill, R.S., Hinshaw, G., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: foreground emission. Astrophys. J. Supp. Ser. 148, 97–117 (2003)

Pietrobon, D., Górski, K.M., Bartlett, J., et al.: Analysis of WMAP 7 year temperature data: astrophysics of the galactic haze. Astrophys. J. 755, 69 (2012)

Ade, P.A., et al.: Planck collaboration: planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594, A1 (2016)

Ade, P.A.: Planck collaboration: planck early results. XXIII. The first all-sky survey of galactic cold clumps. Astron. Astrophys. 539, A23 (2011)

Sarkar, S.: Galactic foregrounds for the CMB. Paper (PoS(FFP14)095) presented at the Frontiers of Fundamental Physics, Marseille, France, 15–18 July (2014)

Su, S.-C., Chu, M.-C.: New anomalies in cosmic microwave background anisotropy: violation of the isotropic Gaussian hypothesis in low-\(\ell \) modes. arXiv:0805.1316 (2008)

Starkman, G.D., Copi, C.J., Huterer, D., Schwarz, D.: The Oddly Quiet Universe: How the CMB challenges cosmology’s standard model. arXiv:1201.2459 (2012)

Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: No large-angle correlations on the non-Galactic microwave sky. Mon. Not. R. Astron. Soc. 399, 295–303 (2009)

Jiang, B.-Z., Lieu, R., Zhang, S.-N., Wakker, B.: Significant foreground unrelated non-acoustic anisotropy on the 1 degree scale in wilkinson microwave anisotropy probe 5-year observations. Astrophys. J. 708, 375–380 (2010)

Bennett, C.L., Hill, R.S., Hinshaw, G., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: are there cosmic microwave background anomalies? Astrophys. J. Supp. Ser. 192, 17 (2011)

Ade, P.A., et al.: Planck collaboration: Planck 2015 results. XVI. Isotropy and statistics of the CMB. Astron. Astrophys. 594, A16 (2016)

Sharpe, H.N.: Heliosheath synchrotron radiation as a possible source for the arcade 2 CMB distortions. arXiv:0902.0181 (2009)

Sharpe, H.N.: A Heliosheath Model for the Origin of the CMB Quadrupole Moment. arXiv:0905.2978 (2009)

Meliá, F.: Cosmological implications of the CMB large-scale structure. Astron. J. 149, 6 (2015)

Lieu, R., Quenby, J., Bonamente, M.: The non-thermal intracluster medium. Astrophys. J. 721, 1482–1491 (2010)

Izotov, Y.I., Thuan, T.X.: The primordial abundance of \(^4\)He: evidence for non-standard big bang nucleosynthesis. Astrophys. J. Lett. 710, L67–L71 (2010)

Casagrande, L., Flynn, C., Portinari, L., Girardi, L., Jiménez, R.: The helium abundance and \(\Delta Y/\Delta Z\) in lower main-sequence stars. Mon. Not. R. Astron. Soc. 382, 1516–1540 (2007)

Coc, A., Goriley, S., Xu, Y., Saimpert, M., Vangioni, E.: Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network. Astrophys. J. 744, 158 (2012)

Anderson, M.E., Bregman, J.N.: Do hot halos around galaxies contain the missing baryons? Astrophys. J. 714, 320–331 (2010)

Becker, R.H., Fan, X., White, R.L., et al.: Evidence for reionization at \(z\sim 6\): detection of a Gunn-Peterson trough in a \(z=6.28\) quasar. Astron. J. 122, 2850–2857 (2001)

Fan, X., Narayanan, V.K., Lupton, R.H., et al.: A survey of \(z>5.8\) quasars in the sloan digital sky survey. I. Discovery of three new quasars and the spatial density of luminous quasars at \(z\sim 6\). Astron. J. 122, 2833–2849 (2001)

Malhotra, S., Rhoads, J.: Luminosity functions of Ly\(\alpha \) Emitters at redshifts \(z=6.5\) and \(z=5.7\): evidence against reionization at \(z<=6.5\). Astrophys. J. Lett. 617, L5–L8 (2004)

Jarosik, N., Bennett, C.L., Dunkley, J., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. Astrophys. J. Supp. Ser. 192, 14 (2011)

Ade, P.A., et al.: Planck collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)

Battaner, E., Florido, E.: Magnetic fields and large scale structure in a hot Universe. IV. The egg-carton Universe. Astron. Astrophys. 338, 383–385 (1998)

Kurki-Suonio, H.: Galactic beads on a cosmic string. Sci. News 137, 287 (1990)

Ekholm, T., Baryshev, Yu., Teerikorpi, P., Hanski, M.O., Paturel, G.: On the quiescence of the Hubble flow in the vicinity of the Local Group. A study using galaxies with distances from the Cepheid PL-relation. Astron. Astrophys. 368, L17–L20 (2001)

Lee, J., Komatsu, E.: Bullet cluster: a challenge to \(\Lambda \)CDM cosmology. Astrophys. J. 718, 60–65 (2010)

Ayaita, Y., Weber, M., Wetterich, C.: Peculiar velocity anomaly from forces beyond gravity? arXiv:0908.2903 (2009)

Atrio-Barandela, F., Kashlinsky, A., Ebeling, H., Fixsen, D.J., Kocevski, D.: Probing the dark flow signal in WMAP 9-year and Planck cosmic microwave background maps. Astrophys. J. 810, 143 (2015)

Perivolaropoulos, L.: Six puzzles for LCDM cosmology. arXiv:0811.4684 (2008)

Tifft, W.G.: Discrete states of redshift and galaxy dynamics. II—systems of galaxies. Astrophys. J. 211, 31–46 (1977)

Bell, M.B.: Discrete intrinsic redshifts from quasars to normal galaxies. arXiv:astro-ph/0211091 (2002)

Bell, M.B., Comeau, S.P.: Intrinsic redshifts in QSOs near NGC 6212. arXiv:astro-ph/0306042 (2003)

Fulton, C.C., Arp, H.C.: The 2dF redshift survey. I. Physical association and periodicity in quasar families. Astrophys. J. 754, 134 (2012)

Bajan, K., Flin, P., Godlowski, W., Pervushin, V.P.: On the investigations of galaxy redshift periodicity. Physics of Particles and Nuclei Letters 4(1), 5–10 (2007)

Steinhardt, P.J.: La inflación a debate. Investigación y Ciencia. Junio 2011, 16–23 (2011)

Martin, J., Ringeval, C., Vennin, V.: Encyclopaedia inflationaris. Phys. Dark Univ. 5, 75–235 (2014)

Turner, M.S.: The case for \(\Omega _M= 0.33\pm 0.035\). Astrophys. J. 576, L101–L104 (2002)

Tasitsiomi, A.: The state of the cold dark matter models on galactic and subgalactic scales. Int. J. Mod. Phys. D 12(7), 1157–1196 (2003)

López-Corredoira, M., Kroupa, P.: The number of tidal dwarf satellite galaxies in dependence of Bulge Index. Astrophys. J. 817, 75 (2016)

Aharonian, F., Akhperjanian, A.G., Bazer-Bachi, A.R., et al.: The H.E.S.S. survey of the inner galaxy in very high energy gamma rays. Astrophys. J. 636, 777–797 (2006)

Sánchez-Conde, M.A.: Gamma-ray dark matter searches in the Milky Way. Paper presented at the Conference Distribution of Mass in the Milky Way, Leiden, Netherlands, 13–17, July (2009)

Milne, P.A., Foley, R.J., Brown, P.J., Narayan, G.: The changing fractions of type Ia supernova NUV–optical subclasses with redshift. Astrophys. J. 803, 20 (2015)

Knop, R.A., Aldering, G., Amanullah, R., et al.: New constraints on \(\Omega _M\), \(\Omega _\Lambda \), and \(w\) from an independent set of 11 high-redshift supernovae observed with the hubble space telescope. Astrophys. J. 598, 102–137 (2003)

Rowan-Robinson, M.: Do type Ia supernovae prove \(\Lambda >0\)? Mon. Not. R. Astron. Soc. 332, 352–360 (2002)

Shanks, T., Allen, P.D., Hoyle, F., Tanvir, N.R.: Cepheid, Tully-Fisher and SNIa distances. arXiv:astro-ph/0102450 (2001)

Shu, W.-Y.: The geometry of the universe. arXiv:1007.1750 (2010)

Melia, F., Shevchuk, A.S.: The \(R_h=ct\) universe. Mon. Not. R. Astron. Soc. 419, 2579–2586 (2012)

Mitra, A.: Why Friedmann cosmology cannot describe the observed universe having pressure and radiation. J. Mod. Phys. 2, 1436–1442 (2011)

Constantin, A., Shields, J.C., Hamann, F., Foltz, C.B., Chaffee, F.H.: Emission-line properties of \(z>4\) quasars. Astrophys. J. 565, 50–62 (2002)

Iwamuro, F., Motohara, K., Maihara, T., Kimura, M., Yoshii, Y., Doi, M.: Fe II/Mg II emission-line ratios of QSOs within \(0 < z < 5.3\). Astrophys. J. 565, 63–77 (2002)

Dietrich, M., Hamann, F., Appenzeller, I., Vertergaard, M.: Fe II/Mg II emission-line ratio in high-redshift quasars. Astrophys. J. 596, 817–829 (2003)

Freudling, W., Corbin, M.R., Korista, K.T.: Iron emission in \(z\sim 6\) QSOS. Astrophys. J. Lett. 587, L67–L70 (2003)

Barth, A.J., Martini, P., Nelson, C.H., Ho, L.C.: Iron emission in the \(z = 6.4\) Quasar SDSS J114816.64+525150.3. Astrophys. J. Lett. 594, L95–L98 (2003)

Labbé, I., Huang, J., Franx, M., et al.: IRAC mid-infrared imaging of the hubble deep field-south: star formation histories and stellar masses of red galaxies at \(z>2\). Astrophys. J. 624, L81–L84 (2005)

Wiklind, T., Dickinson, M., Ferguson, H.C., Giavalisco, M., Mobasher, B., Grogin, N.A., Panagia, N.: A population of massive and evolved galaxies at \(z>\sim 5\). Astrophys. J. 686, 781–806 (2008)