Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: a Systematic Review
Tóm tắt
The test–retest reliability of the one-repetition maximum (1RM) test varies across different studies. Given the inconsistent findings, it is unclear what the true reliability of the 1RM test is, and to what extent it is affected by measurement-related factors, such as exercise selection for the test, the number of familiarization trials and resistance training experience.
The aim of this paper was to review studies that investigated the reliability of the 1RM test of muscular strength and summarize their findings.
The PRISMA guidelines were followed for this systematic review. Searches for studies were conducted through eight databases. Studies that investigated test–retest reliability of the 1RM test and presented intra-class correlation coefficient (ICC) and/or coefficient of variation (CV) were included. The COSMIN checklist was used for the assessment of the methodological quality of the included studies.
After reviewing 1024 search records, 32 studies (pooled
Based on the results of this review, it can be concluded that the 1RM test generally has good to excellent test–retest reliability, regardless of resistance training experience, number of familiarization sessions, exercise selection, part of the body assessed (upper vs. lower body), and sex or age of participants. Researchers and practitioners, therefore, can use the 1RM test as a reliable test of muscular strength.
Từ khóa
Tài liệu tham khảo
Stone MH. Position statement: explosive exercises and training. Natl Strength Cond Assoc J. 1993;15(3):7–15.
Katula JA, Rejeski WJ, Marsh AP. Enhancing quality of life in older adults: a comparison of muscular strength and power training. Health Qual Life Outcomes. 2008;6:45.
Liu-Ambrose T, Khan KM, Eng JJ, et al. Resistance and agility training reduce fall risk in women aged 75 to 85 with low bone mass: a 6-month randomized, controlled trial. J Am Geriatr Soc. 2004;52(5):657–65.
Steib S, Schoene D, Pfeifer K. Dose-response relationship of resistance training in older adults: a meta-analysis. Med Sci Sports Exerc. 2010;42(5):902–14.
Edwards MK, Loprinzi PD. Adequate muscular strength may help to reduce risk of residual-specific mortality: findings from the National Health and Nutrition Examination Survey. J Phys Act Health. 2018;15(5):369–73.
American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687-708.
World Health Organization. Global recommendations on physical activity for health. Geneva, CH: World Health Organization. 2010.
Baroni BM, Pompermayer MG, Cini A, et al. Full range of motion induces greater muscle damage than partial range of motion in elbow flexion exercise with free weights. J Strength Cond Res. 2017;31(8):2223–30.
Schoenfeld BJ, Contreras B, Willardson JM, et al. Muscle activation during low- versus high-load resistance training in well-trained men. Eur J Appl Physiol. 2014;114(12):2491–7.
Duncan MJ, Weldon A, Price MJ. The effect of sodium bicarbonate ingestion on back squat and bench press exercise to failure. J Strength Cond Res. 2014;28(5):1358–66.
Grgic J, Mikulic P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;17(8):1029–36.
Fink JE, Schoenfeld BJ, Kikuchi N, et al. Acute and long-term responses to different rest intervals in low-load resistance training. Int J Sports Med. 2017;38(2):118–24.
McKendry J, Pérez-López A, McLeod M, et al. Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males. Exp Physiol. 2016;101(7):866–82.
Perrin DH. Isokinetic exercise and assessment. Champaign, IL: Human Kinetics; 1993. p. 9.
Kraemer WJ, Ratamess NA, Fry AC, et al. Strength testing: development and evaluation of methodology. In: Maud PJ, Foster C, editors. Physiological Assessment of Human Fitness. Champaign, IL: Human Kinetics; 2006. p. 119–50.
Buckley TA, Hass CJ. Reliability in one-repetition maximum performance in people with Parkinson's disease. Parkinsons Dis. 2012;2012:928736.
Faigenbaum AD, Milliken LA, Westcott WL. Maximal strength testing in healthy children. J Strength Cond Res. 2003;17(1):162–6.
Levinger I, Goodman C, Hare DL, et al. The reliability of the 1RM strength test for untrained middle-aged individuals. J Sci Med Sport. 2009;12(2):310–6.
Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297–316.
Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–38.
Amarante do Nascimento M, Januário RS, Gerage AM, et al. Familiarization and reliability of one repetition maximum strength testing in older women. J Strength Cond Res. 2013;27(6):1636–42.
Augustsson J, Bruno M, Swärd J. Development of a new isometric strength test using an isoinertial-based weight machine. Adv Physiother. 2010;12(2):81–6.
Augustsson SR, Svantesson U. Reliability of the 1 RM bench press and squat in young women. Eur J Physiother. 2013;15(3):118–26.
Benton MJ, Raab S, Waggener GT. Effect of training status on reliability of one repetition maximum testing in women. J Strength Cond Res. 2013;27(7):1885–90.
Benton MJ, Swan PD, Peterson MD. Evaluation of multiple one repetition maximum strength trials in untrained women. J Strength Cond Res. 2009;23(5):1503–7.
Barbalho M, Gentil P, Raiol R, et al. High 1RM tests reproducibility and validity are not dependent on training experience, muscle group tested or strength level in older women. Sports. 2018;6(4). pii: E171.
Carabello RJ, Reid KF, Clark DJ, et al. Lower extremity strength and power asymmetry assessment in healthy and mobility-limited populations: reliability and association with physical functioning. Aging Clin Exp Res. 2010;22(4):324–9.
Comfort P, McMahon JJ. Reliability of maximal back squat and power clean performances in inexperienced athletes. J Strength Cond Res. 2015;29(11):3089–96.
Ellis R, Holland AE, Dodd K, et al. Reliability of one-repetition maximum performance in people with chronic heart failure. Disabil Rehabil. 2018. https://doi.org/10.1080/09638288.2018.1443160.
Faigenbaum AD, McFarland JE, Herman RE, et al. Reliability of the one-repetition-maximum power clean test in adolescent athletes. J Strength Cond Res. 2012;26(2):432–7.
García-Ramos A, Haff GG, Pestaña-Melero FL, et al. Feasibility of the 2-Point method for determining the 1-repetition maximum in the bench press exercise. Int J Sports Physiol Perform. 2018;13(4):474–81.
Grosicki GJ, Miller ME, Marsh AP. Resistance exercise performance variability at submaximal intensities in older and younger adults. Clin Interv Aging. 2014;9:209218.
Hageman PA, Walker SN, Pullen CH, et al. Test-retest reliability of the rockport fitness walking test and other fitness measures in women ages 50–69 years. J Geriatr Phys Ther. 2001;24(2):7–11.
LeBrasseur NK, Bhasin S, Miciek R, et al. Tests of muscle strength and physical function: reliability and discrimination of performance in younger and older men and older men with mobility limitations. J Am Geriatr Soc. 2008;56(11):2118–23.
McCurdy K, Langford G, Jenkerson D, et al. The validity and reliability of the 1RM bench press using chain-loaded resistance. J Strength Cond Res. 2008;22(3):678–83.
McCurdy K, Langford GA, Cline AL, et al. The reliability of 1- and 3Rm tests of unilateral strength in trained and untrained men and women. J Sports Sci Med. 2004;3(3):190–6.
Neto JC, Cedin L, Dato CC, et al. Single session of testing for one repetition maximum (1RM) with eight exercises is trustworthy. JEPonline. 2015;18(3):74–80.
Patterson P, Sherman J, Hitzelberger L, et al. Test-retest reliability of selected LifeCircuit machines. J Strength Cond Res. 1996;10(4):246–9.
Phillips WT, Batterham AM, Valenzuela JE, et al. Reliability of maximal strength testing in older adults. Arch Phys Med Rehabil. 2004;85(2):329–34.
Ribeiro AS. do Nascimento MA, Amarante M, et al. Reliability of 1RM test in detrained men with previous resistance training experience. Isokinet Exerc Sci. 2014;22(2):137–43.
Ribeiro AS. do Nascimento MA, Salvador EP, et al. Reliability of one-repetition maximum test in untrained young adult men and women. Isokinet Exerc Sci. 2014;22(2):175–82.
Rydwik E, Karlsson C, Frändin K, et al. Muscle strength testing with one repetition maximum in the arm/shoulder for people aged 75+ -test-retest reliability. Clin Rehabil. 2007;21(3):258–65.
Salem GJ, Wang MY, Sigward S. Measuring lower extremity strength in older adults: the stability of isokinetic versus 1RM measures. J Aging Phys Act. 2002;10(4):489–503.
Schroeder ET, Wang Y, Castaneda-Sceppa C, et al. Reliability of maximal voluntary muscle strength and power testing in older men. J Gerontol A Biol Sci Med Sci. 2007;62(5):543–9.
Scott BR, Dascombe BJ, Delaney JA, et al. The validity and reliability of a customized rigid supportive harness during Smith machine back squat exercise. J Strength Cond Res. 2014;28(3):636–42.
Seo DI, Kim E, Fahs CA, et al. Reliability of the one-repetition maximum test based on muscle group and gender. J Sports Sci Med. 2012;11(2):221–5.
Sugiura Y, Hatanaka Y, Arai T, et al. Estimations of one repetition maximum and isometric peak torque in knee extension based on the relationship between force and velocity. J Strength Cond Res. 2016;30(4):980–8.
Tagesson SK, Kvist J. Intra- and interrater reliability of the establishment of one repetition maximum on squat and seated knee extension. J Strength Cond Res. 2007;21(3):801–7.
Tiggemann CL, Guedes MG, Bgeginski R, et al. The reliability of the one maximum repetition in sedentary, active and strength-trained subjects. Motriz. 2011;17(4):700–7.
Urquhart BG, Moir GL, Graham SM, et al. Reliability of 1RM split-squat performance and the efficacy of assessing both bilateral squat and split-squat 1RM in a single session for non-resistance-trained recreationally active men. J Strength Cond Res. 2015;29(7):1991–8.
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability esearch. J Chiropr Med. 2016;15(2):155–63.
Machin D, Campbell MJ, Walters SJ. Medical statistics. John Wiley & Sons Ltd, Chichester; 2007. pp. 203.
Mokkink LB, Terwee CB, Patrick DL, et al. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Qual Life Res. 2010;19(4):539–49.
Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol (Oxf). 2013;209(4):283–94.
Bagley JR, Burghardt KJ, McManus R, et al. Epigenetic responses to acute resistance exercise in trained vs. sedentary men. J Strength Cond Res. 2019. https://doi.org/10.1519/JSC.0000000000003185.
Duez L, Qerama E, Fuglsang-Frederiksen A, et al. Electrophysiological characteristics of motor units and muscle fibers in trained and untrained young male subjects. Muscle Nerve. 2010;42(2):177–83.
Ritti-Dias RM, Avelar A, Salvador EP, et al. Influence of previous experience on resistance training on reliability of one-repetition maximum test. J Strength Cond Res. 2011;25(5):1418–22.
Ploutz-Snyder LL, Giamis EL. Orientation and familiarization to 1RM strength testing in old and young women. J Strength Cond Res. 2001;15(4):519–23.
Mattocks KT, Buckner SL, Jessee MB, et al. Practicing the test produces strength equivalent to higher volume training. Med Sci Sports Exerc. 2017;49(9):1945–54.
Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol. 2014;210(4):768–89.
Stevens JE, Stackhouse SK, Binder-Macleod SA, et al. Are voluntary muscle activation deficits in older adults meaningful? Muscle Nerve. 2003;27(1):99–101.
Schoenfeld BJ, Grgic J, Contreras B, et al. To flex or rest: Does adding no-load isometric actions to the inter-set rest period in resistance training enhance muscular adaptations? A randomized-controlled trial. Front Physiol. 2020;10:1571.
Schoenfeld BJ, Contreras B, Krieger J, et al. Resistance training volume enhances muscle hypertrophy but not strength in trained men. Med Sci Sports Exerc. 2019;51(1):94–103.
Mangine GT, Hoffman JR, Gonzalez AM, et al. The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol Rep. 2015;3(8). pii: e12472.
Hackett DA, Amirthalingam T, Mitchell L, et al. Effects of a 12-week modified German volume training program on muscle strength and hypertrophy—a pilot study. Sports. 2018;6(1):7.
Lasevicius T, Schoenfeld BJ, Grgic J, et al. Similar muscular sadaptations in resistance training performed two versus three days per week. J Hum Kinet. 2019 Aug 21;68:135–43.
Trevethan R. Intraclass correlation coefficients: clearing the air, extending some cautions, and making some requests. Health Serv Outcomes Res Methodol. 2017;17(2):127–43.
Grgic J, Oppici L, Mikulic P, et al. Test-retest reliability of the Yo-Yo test: a systematic review. Sports Med. 2019;49(10):1547–57.