Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals

Journal of Computational Science - Tập 59 - Trang 101544 - 2022
Ramiro Casal1,2,3, Leandro E. Di Persia4,2, Gastón Schlotthauer1,2,3
1Laboratory of Signals and Nonlinear Dynamics, Faculty of Engineering, National University of Entre Ríos (UNER), RP11 Km 10, Oro Verde, E3100, Entre Ríos, Argentina
2National Council of Scientific and Technical Research (CONICET), Argentina
3Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, UNER - CONICET, Argentina
4Research Institute for Signals, Systems and Computational Intelligence, Faculty of Engineering and Water Sciences, National University of Litoral, Ciudad Universitaria, S3000 Santa Fe, Argentina

Tài liệu tham khảo

Stickgold, 2005, Sleep-dependent memory consolidation, Nature, 437, 1272, 10.1038/nature04286

Sateia, 2014, International classification of sleep disorders: highlights and modifications, Chest J., 146, 1387, 10.1378/chest.14-0970

Berry, 2012

Norman, 2000, Interobserver agreement among sleep scorers from different centers in a large dataset., Sleep, 23, 901, 10.1093/sleep/23.7.1e

Supratak, 2017, DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG, IEEE Trans. Neural Syst. Rehabil. Eng., 25, 1998, 10.1109/TNSRE.2017.2721116

Phan, 2019, SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging, IEEE Trans. Neural Syst. Rehabil. Eng., 27, 400, 10.1109/TNSRE.2019.2896659

Penzel, 2003, Dynamics of heart rate and sleep stages in normals and patients with sleep apnea, Neuropsychopharmacology, 28, S48, 10.1038/sj.npp.1300146

Aeschbacher, 2016, Heart rate variability and sleep-related breathing disorders in the general population, Am. J. Cardiol., 118, 912, 10.1016/j.amjcard.2016.06.032

Adnane, 2012, Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram, Expert Syst. Appl., 39, 1401, 10.1016/j.eswa.2011.08.022

Malik, 2018, Sleep-wake classification via quantifying heart rate variability by convolutional neural network, Physiol. Meas., 39, 10.1088/1361-6579/aad5a9

Casal, 2019, Sleep-wake stages classification using heart rate signals from pulse oximetry, Heliyon, 5, 10.1016/j.heliyon.2019.e02529

Beattie, 2017, Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals, Physiol. Meas., 38, 1968, 10.1088/1361-6579/aa9047

Bai, 2018

Springenberg, 2014

Ioffe, 2015

Hinton, 2012

Ba, 2016

Redline, 1998, Methods for obtaining and analyzing unattended polysomnography data for a multicenter study, Sleep, 21, 759, 10.1093/sleep/21.7.759

Kingma, 2014

Fonseca, 2020, Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population, Sleep, 10.1093/sleep/zsaa048

Xiao, 2013, Sleep stages classification based on heart rate variability and random forest, Biomed. Signal Process. Control, 8, 624, 10.1016/j.bspc.2013.06.001