Temporal betweenness centrality in dynamic graphs

International Journal of Data Science and Analytics - Tập 9 Số 3 - Trang 257-272 - 2020
Ioanna Tsalouchidou1, Ricardo Baeza–Yates2,1, Francesco Bonchi3, Kewen Liao4, Timos Sellis5
1Pompeu Fabra University, Barcelona, Spain
2NTENT Inc., San Diego, USA
3ISI Foundation, Turin, Italy
4Charles Darwin University, Sydney, Australia
5Swinburne University, Melbourne, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

AlGhamdi, Z., Jamour, F., Skiadopoulos, S., Kalnis, P.: A benchmark for betweenness centrality approximation algorithms on large graphs. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management (SSDBM), p. 6 (2017)

Ang, C.S.: Interaction networks and patterns of guild community in massively multiplayer online games. Soc. Netw. Anal. Min. 1, 341 (2011)

Anthonisse, J.: The rush in a directed graph. Technical Report, Stichting Mathematisch Centrum (1971)

Bergamini, E., Meyerhenke, H.: Fully-dynamic approximation of betweenness centrality. In: Algorithms-ESA 2015, pp. 155–166. Springer, Berlin (2015)

Bergamini, E., Meyerhenke, H., Ortmann, M., Slobbe, A.: Faster betweenness centrality updates in evolving networks. In: 16th International Symposium on Experimental Algorithms, SEA 2017, June 21–23, 2017, pp. 23:1–23:16, London (2017)

Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)

Brandes, U., Kenis, P., Lerner, J., van Raaij, D.: Network analysis of collaboration structure in Wikipedia. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20–24, pp. 731–740 (2009)

Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

Catanese, S., Ferrara, E., Fiumara, G.: Forensic analysis of phone call networks. Soc. Netw. Anal. Min. 3, 15–33 (2012)

Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: WSDM (2010)

Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness centrality. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom), pp. 11–20 (2012)

Gunturi, V.M., Shekhar, S., Joseph, K., Carley, K.M.: Scalable computational techniques for centrality metrics on temporally detailed social network. Mach. Learn. 106(8), 1133–1169 (2017)

Habiba, H., Tantipathananandh, C., Berger-Wolf, T.Y.: Betweenness centrality measure in dynamic networks. DIMACS Technical Report 2007-19 (2007)

Hayashi, T., Akiba, T., Yoshida, Y.: Fully dynamic betweenness centrality maintenance on massive networks. Proc. VLDB Endow. 9(2), 48–59 (2015)

Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

Jamour, F., Skiadopoulos, S., Kalnis, P.: Parallel algorithm for incremental betweenness centrality on large graphs. IEEE Trans. Parallel Distrib. Syst. 29, 659–672 (2018)

Jeong, H., Mason, S., Barabási, A., Oltvai, Z.: Lethality and centrality in protein networks. Nature 411, 41 (2001)

Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updating betweenness centrality in dynamically growing networks. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 33–40 (2013)

Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’03 (2003)

Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

Kim, H., Anderson, R.: Temporal node centrality in complex networks. Phys. Rev. E 85(2), 026107 (2012)

Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online betweenness centrality in evolving graphs. IEEE Trans. Knowl. Data Eng. 27(9), 2494–2506 (2015)

Lee, M.-J., Choi, S., Chung, C.-W.: Efficient algorithms for updating betweenness centrality in fully dynamic graphs. Inf. Sci. 326, 278–296 (2016)

Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Governance in social media: a case study of the Wikipedia promotion process. In: Proceedings of the 4th International Conference on Weblogs and Social Media, ICWSM 2010, Washington, DC, USA, May 23–26 (2010)

Liljeros, F., Edling, C., Amaral, L., Stanley, H., Aberg, Y.: The web of human sexual contacts. Nature 411, 907 (2001)

Maglaras, L.A., Katsaros, D.: New measures for characterizing the significance of nodes in wireless ad hoc networks via localized path-based neighborhood analysis. Soc. Netw. Anal. Min. 2, 97–106 (2012)

Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: inferring user profiles in online social networks. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, WSDM’10 (2010)

Ni, P., Hanai, M., Tan, W.J., Wang, C., Cai, W.: Parallel algorithm for single-source earliest-arrival problem in temporal graphs. In: 2017 46th International Conference on Parallel Processing (ICPP), pp. 493–502 (2017)

Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, UK, February 6–10, 2017, pp. 601–610 (2017)

Pereira, F.S.F., de Amo, S., Gama, J.: Evolving centralities in temporal graphs: a Twitter network analysis. In: IEEE 17th International Conference on Mobile Data Management, MDM2016, Porto, Portugal, June 13–16, 2016—Workshops, pp. 43–48 (2016)

Pontecorvi, M., Ramachandran, V.: Fully dynamic betweenness centrality. In: Algorithms and Computation—26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9–11, 2015, Proceedings, pp. 331–342 (2015)

Rad, A.A., Flocchini, P., Gaudet, J.: Computation and analysis of temporal betweenness in a knowledge mobilization network. Comput. Soc. Netw. 4, 5 (2017)

Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM’14, pp. 413–422, New York (2014)

Riondato, M., Upfal, E.: Abra: approximating betweenness centrality in static and dynamic graphs with rademacher averages. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1145–1154 (2016)

Shekhar, S., Brugere, I., Gunturi, V.M.: Modeling and analysis of spatiotemporal social networks. Encycl. Soc. Netw. Anal. Min. 2014, 950–960 (2014)

Tang, J., Musolesi, M., Mascolo, C., Latora, V., Nicosia, V.: Analysing information flows and key mediators through temporal centrality metrics. In: Proceedings of the 3rd Workshop on Social Network Systems, SNS’10, pp. 3:1–3:6, New York (2010)

Viswanath, B., Mislove, A., Cha, M., Gummadi, P.K.: On the evolution of user interaction in Facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, WOSN 2009, Barcelona, Spain, August 17, pp. 37–42 (2009)

Williams, M.J., Musolesi, M.: Spatio-temporal networks: reachability, centrality and robustness. Open Sci. 3(6), 160–196 (2016)

Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal graphs. Proc. VLDB Endow. 7(9), 721–732 (2014)

Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for temporal path computation. IEEE Trans. Knowl. Data Eng. 28(11), 2927–2942 (2016)