Temperature sensitivity of soil organic matter decomposition—what do we know?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ågren GI, Bosatta E (2002) Reconciling differences in predictions of temperature response of soil organic matter. Soil Biol Biochem 34:129–132
Ågren GI, Wetterstedt JÅM (2007) What determines the temperature response of soil organic matter decomposition? Soil Biol Biochem 39:1794–1798
Anderson TH, Domsch KH (1985a) Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fertil Soils 1:81–89
Anderson TH, Domsch KH (1985b) Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions. Soil Biol Biochem 17:197–203
Anderson T-H, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH the microbial biomass of forest soils. Soil Biol Biochem 25:393–395
Anderson DJ, Flanagan PW (1989) Biological processes regulating organic matter dynamics in tropical soils. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. Department of Agronomy and Soil Science, University of Hawaii, Honolulu, pp 97–124
Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248
Behera B, Wagner GH (1974) Microbial growth rate in glucose-amended soil. Soil Sci Soc Am Proc 38:591–594
Bellamy PH, Loveland PJ, Bradley RI, Lark M, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248
Biasi C, Rusalimova O, Mayer H, Kaiser C, Wanek W, Barsukov P, Junger H, Richter A (2005) Temperature-dependent shift from labile to recalcitrant carbon sources of artic heterotrophs. Rapid Commun Mass Spectrom 19:1401–1408
Bird MI, Chivas AR, Head J (1996) A latitudinal gradient in carbon turnover times in forest soils. Nature 381:143–146
Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131
Boddy E, Roberts P, Hill PW, Farrar J, Jones DL (2008) Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biol Biochem 40:1557–1566
Bol R, Bolger T, Cully R, Little D (2003) Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. J Plant Nutr Soil Sci 166:300–307
Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891
Bradford MA, Davies CA, Frey SD, Maddox R, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327
Cheng W, Zhang Q, Coleman DC, Carroll CR, Hoffman CA (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283–1288
Christensen BT (1996) Carbon in primary and secondary organomineral complexes. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC, Boca Raton, pp 97–166
Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008a) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Chang Biol 14:868–877
Conant RT, Steinweg JM, Haddix ML, Paul EA, Plante AF, Six J (2008b) Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology 89:2384–2391
Conen F, Leifeld J, Seth B, Alewell C (2006) Warming mineralises young and old soil carbon equally. Biogeosciences 3:515–519
Conen F, Karhu K, Leifeld J, Seth B, Vanhala P, Liski J, Alewell C (2008) Temperature sensitivity of young and old soil carbon—same soil, slight differences in 13C natural abundance method, inconsistent results. Soil Biol Biochem 40:2703–2705
Coûteaux M-M, Bottner P, Anderson JM, Berg B, Bolger T, Casals P, Romanyà J, Thiéry JM, Vallejo VR (2001) Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry 54:147–170
Coûteaux MM, Sarmiento L, Bottner P, Acevedo D, Thiéry JM (2002) Decomposition of standard plant material along an altitudinal transect (65–3968 m) in the tropical Andes. Soil Biol Biochem 34:69–78
Dalias P, Anderson J, Bottner P, Coûteaux M-M (2001) Long-term effects of temperature on carbon mineralisation processes. Soil Biol Biochem 32:1049–1057
Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:65–173
Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic carbon content. Nature 408:789–790
Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Chang Biol 12:154–164
Ekschmitt K, Liu M, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil? Geoderma 128:167–176
Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Sune Linder S, Ågren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Chang Biol 11:167–181
Fang C, Smith P, Moncrieff JB, Smith JU (2005a) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59
Fang C, Smith P, Smith JU (2005b) Is resistant soil organic matter more sensitive to temperature than the labile organic matter? Biogeosciences Discuss 2:725–735
Feng X, Simpson MJ (2008) Temperature responses of individual soil organic matter components. J Geophys Res 113:G03036. doi: 03010.01029/02008JG000743
Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Chang Biol 9:1322–1332
Fierer N, Craine JM, McLauchlan KK, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326
Flessa H, Amelung W, Helfrich M, Wiesenberg GLB, Gleixner G, Brodowski S, Rethemeyer J, Kramer C, Grootes P-M (2008) Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. J Plant Nutr Soil Sci 171:36–51
Gershenson A, Bader NE, Cheng WX (2009) Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob Chang Biol 15:176–183
Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861
Graf A, Weihermüller L, Huisman JA, Herbst M, Bauer J, Vereecken H (2008) Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences Discuss 5:1867–1898
Gu LH, Post WM, King AW (2004) Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Glob Biogeochem Cycles 18:Gb1022. doi: 1010.1029/2003gb002119
Hakkenberg R, Churkina G, Rodeghiero M, Börner A, Steinhof A, Cescatti A (2008) Temperature sensitivity of the turnovertimes of soil organic matter in forests. Ecol Appl 18:119–131
Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochem 48:115–146
Hartley IP, Ineson P (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol Biochem 40:1567–1574
Hopkins DW, Sparrow AD, Elberling B, Gregorich EG, Novis PM, Greenfield LG, Tilston EL (2006) Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol Biochem 38:3130–3140
Hopkins DW, Waite IS, Mc Nicol JW, Poulton PR, Mac Donald AJ, O’Donnell AG (2009) Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Glob Chang Biol 15:1739–1754. doi: 10.1111/j.1365-2486.2008.01809.x:
Insam H, Parkinson D, Domsch KH (1989) Influence of macroclimate on soil microbial biomass. Soil Biol Biochem 21:211–221
Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306
Jenny H (1941) Factors of soil formation. McGraw Hill, New York, p 281
Jin XB, Wang SM, Zhou YK (2008) Microbial CO2 production from surface and subsurface soil as affected by temperature, moisture, and nitrogen fertilisation. Aust J Soil Res 46:273–280
Joergensen RG, Brookes PC, Jenkinson DS (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22:1129–1136
Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671
Kätterer T, Reichstein M, Andren O, Lomander A (1998) Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol Fertil Soils 27:258–262
Kirkby KJ, Smart SM, Black HIJ, Bunce RGH, Corney PM, Smithers RJ (2005) Long term ecological change in British woodland (1971–2001). English Nature, Peterborough English Nature Research Report 653
Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biol Biochem 27:753–760
Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochem 48:21–51
Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–2518
Knorr W, Prentice IC, House IJ, Holland EA (2005a) On the available evidence for the temperature dependence of soil organic carbon. Biogeosciences Discuss 2:749–755
Knorr W, Prentice IC, House JI, Holland EA (2005b) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301
Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem Cycles 21:GB4017. doi: 4010.1029/2007GB002983
Larionova AA, Yevdokimov IV, Bykhovets SS (2007) Temperature response of soil respiration is dependent on concentration of readily decomposable C. Biogeosciences 4:1073–1081
Lavelle P, Blanchart E, Martin A, Martin S, Spain A, Toutain F, Barois I, Schaefer R (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150
Leifeld J (2005) Interactive comment on “On the available evidence for the temperature dependence of soil organic carbon” by W. Knorr et al. Biogeosciences Discuss 2:348–352
Leifeld J, Fuhrer J (2005) The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochem 75:433–453
Leifeld J, Zimmermann M, Fuhrer J (2008) Simulating decomposition of labile soil organic carbon: effects of pH. Soil Biol Biochem 40:2948–2951
Liski J, Ilvesniemi H, Mäkelä A, Westman CJ (1999) CO2 emissions from soil in response to climatic warming are overestimated—the decomposition of old soil organic matter is tolerant of temperature. Ambio 29:171–174
Luo Y, Wan S, Hui D, Wallace L (2001) Acclimation of soil respiration to warming in a tall grass prairie. Nature 413:622–625
Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle. Feedbacks to the climate system. Science 298:2173–2176
Müller CW, Kögel-Knabner I (2009) Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol Fertil Soils 45:347–359
Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670
Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981
Ottow JCG (1997) Omnipotenz der Lebensgemeinschaften. In: Ottow JCG, Bidlingmaier W (eds) Umweltbiotechnologie. Gustav Fischer, Stuttgart, pp 99–103
Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794
Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego, p 340
Paul EA, Vorney RP (1980) Nutrient and energy flows through soil microbial biomass. In: Ellwood DC, Latham MJ, Slater JH, Hedger JN, Lynch JM (eds) Contemporary microbial ecology. Academic, London, pp 215–237
Pavelka M, Acosta M, Marek MV, Kutsch W, Janous D (2007) Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant Soil 292:171–179
Post WM, Emanuel WR, Zinke PJ, Stangenberger AL (1982) Soil carbon pools and world life zones. Nature 298:156–159
Reichstein M, Kätterer T, Andre O, Ciais P, Schulze E-D, Cramer W, Cramer W, Papale D, Valentini R (2005a) Does the temperature sensitivity of decomposition vary with soil organic matter quality? Biogeosciences Discuss 2:737–747
Reichstein M, Kätterer T, Andren O, Ciais P, Schulze E-D, Cramer W, Papale D, Valentini R (2005b) Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences 2:317–321
Rey A, Pegoraro E, Jarvis PG (2008) Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST). Eur J Soil Sci 59:1049–1062
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, Gcte N (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562
Sanchez P, Gichuru MP, Katz LB (1982) Organic matter in major soils of the tropical and temperate regions. Translations of the 12th International Congress of Soil Science (New Delhi) 1, pp 99–114
Sanchez PA, Palm CA, Szott LT, Chuevas E, Lal R (1989) Organic input management in tropical agroecosystems. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii, Honolulu, pp 125–152
Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycles 8:279–293
Schlesinger WH (1995) An overview of the C cycle. In: Lal R, Kimble J, Levin J, Stewart BA (eds) Soils and global change. CRC, Boca Raton, pp 9–26
Shi PL, Zhang XZ, Zhong ZM, Ouyang H (2006) Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. Agric For Meteorol 137:220–233
Shields JA, Paul EA, Lowe WE (1973) Turnover of microbial tissue in soil under field conditions. Soil Biol Biochem 5:753–764
Smith P, Chapman SJ, Scott WA, Black HIJ, Wattenbach M, Milne R, Cambell CD, Lilly A, Ostle N, Levy PE, Lumsdon DG, Millard P, Towers W, Zaehle S, Smith JU (2007) Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003. Glob Chang Biol 13:2605–2609
Smith P, Fang CM, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Advances in agronomy, vol 97. Elsevier, San Diego, pp 1–43
Sollins P, Homann P, Caldwell BA (1996) Stabilisation and destabilisation of soil organic matter: mechanisms and controls. Geoderma 74:65–105
Steinweg JM, Plante AF, Conant RT, Paul EA, Tanaka DL (2008) Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol Biochem 40:2722–2728
Tang JW, Baldocchi DD, Qi Y, Xu LK (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 118:207–220
Thornley JHM, Cannell MGR (2001) Soil carbon storage response to temperature: an hypothesis. Ann Bot 87:591–598
Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Chang Biol 7:223–230
Townsend AR, Vitousek PM, Trumbore SE (1995) Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76:721–733
Trasar-Cepeda C, Gil-Sotres F, Leiros MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319
Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground dynamics. Ecol Appl 10:399–411
Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396
USDA (2000) Soil organic carbon map. US Department of Agriculture, Natural Resources, Conservation Service, Soil Survey Division, World Soil Resources, Washington, DC. Available via DIALOG. http://soils.usda.gov/use/worldsoils/mapindex/order.html
Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guethmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff JB, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861865
Vanhala P, Karhu K, Tuomi M, Sonninen E, Jungner H, Fritze H, Liski J (2007) Old soil carbon is more temperature sensitive than the young in an agricultural field. Soil Biol Biochem 39:2967–2970
von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445
von Lützow M, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124
Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochem 67:235–248
Walse C, Berg B, Svedrup H (1998) Review and synthesis of experimental data on organic matter decomposition with respect to the effects of temperature, moisture, and acidity. Environ Rev 6:25–40
Wang C, Yang J, Zhang Q (2006) Soil respiration in six temperate forests in China. Glob Chang Biol 12:2103–2114
Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358
Wardle DA (1993) Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct Ecol 7:346–355
Wardle DA (1998) Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biol Biochem 30:1627–1637
Xu M, Qi Y (2001) Spatial and seasonal variations of Q(10) determined by soil respiration measurements at a Sierra Nevadan forest. Glob Biogeochem Cycles 15:687–696
Yuste JC, Baldocchi DD, Gershenson A, Goldstein A, Misson NL, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob Change Biol 13:2018–2035