Những thay đổi do nhiệt độ gây ra trong việc sử dụng chất hữu cơ của biofilm ở các dòng suối Bắc Cực (Đảo Disko, Greenland)

Springer Science and Business Media LLC - Tập 44 - Trang 2177-2188 - 2021
Ada Pastor1,2, Paraskevi Manolaki1,3,4, Anna Freixa5, Pau Giménez-Grau1, Anna M. Romaní6, Tenna Riis1,2
1Department of Biology, Aarhus University, Aarhus C, Denmark
2Arctic Research Center, Aarhus University, Aarhus C, Denmark
3Aarhus Institute of Advanced Studies, Aarhus University, Aarhus C, Denmark
4Open University of Cyprus, Latsia, Cyprus
5Catalan Institute for Water Research (ICRA), Girona, Spain
6Institute of Aquatic Ecology, University of Girona, Girona, Spain

Tóm tắt

Thực vật đất trên vùng Bắc Cực đang phản ứng với sự ấm lên bằng cách gia tăng sinh khối và năng suất, nhưng tác động đối với các hệ sinh thái nước ngọt vẫn chưa rõ ràng. Các enzym ngoại bào của biofilm là những tác nhân quan trọng trong việc xử lý chất hữu cơ trong các hệ sinh thái thủy sinh, do đó việc hiểu cách thức hoạt động của các enzym thay đổi theo nhiệt độ nước và sự sẵn có của chất hữu cơ là điều cần thiết để đánh giá tác động của biến đổi khí hậu. Trong nghiên cứu này, chúng tôi đã khảo sát hoạt động của enzym biofilm trong sáu dòng suối khác nhau về sự che phủ thực vật ven bờ và chế độ nhiệt nước ở Đảo Disko, Greenland. Đối với tất cả các dòng suối, hoạt động của các enzym biofilm cho thấy sự hoạt động thấp trong việc phân hủy vật liệu thực vật, như mong đợi ở Bắc Cực. Tuy nhiên, khác với các polysaccharide đơn giản, đã có sự gia tăng đáng kể trong khả năng phân hủy hemicellulose ở những dòng suối có độ che phủ thực vật cao. Hơn nữa, các biofilm trong các dòng suối có độ che phủ thực vật cao cho thấy khả năng tự dưỡng lớn hơn (tỷ lệ giữa chlorophyll a và tổng lượng chất hữu cơ) và hoạt động phosphatase cao hơn so với các dòng suối có độ che phủ thực vật thấp. Độ nhạy cảm của enzym đối với nhiệt độ (được đo bằng tốc độ thay đổi hoạt động enzym của biofilm ở 3 và 22 °C) không thay đổi giữa các dòng suối, nhưng khác nhau giữa các loại enzym. Enzym phosphatase và phenol oxidase có độ nhạy cảm cao nhất đối với nhiệt độ nước, điều này gợi ý rằng sự phân hủy các hợp chất phospho hữu cơ và lignin có thể bị tăng cường một cách không tương xứng dưới các kịch bản khí hậu ấm lên.

Từ khóa

#Biofilm #enzym ngoại bào #Bắc Cực #biến đổi khí hậu #dòng suối #chất hữu cơ #tính nhạy cảm với nhiệt độ.

Tài liệu tham khảo

Arnosti C (2003) Microbial extracellular enzymes and their role in dissolved organic matter cycling. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier, Amsterdam Barnes RT, Butman DE, Wilson H, Raymond PA (2018) Riverine export of aged carbon driven by flow path depth and residence time. Environ Sci Technol 52:1028–1035. https://doi.org/10.1021/acs.est.7b04717 Battin TJ, Besemer K, Bengtsson MM et al (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251–263. https://doi.org/10.1038/nrmicro.2016.15 Bhatt US, Walker DA, Raynolds MK et al (2017) Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ Res Lett 12:055003 Boulêtreau S, Salvo E, Lyautey E et al (2012) Temperature dependence of denitrification in phototrophic river biofilms. Sci Total Environ 416:323–328. https://doi.org/10.1016/j.scitotenv.2011.11.066 Di Pippo F, Ellwood NTW, Guzzon A et al (2012) Effect of light and temperature on biomass, photosynthesis and capsular polysaccharides in cultured phototrophic biofilms. J Appl Phycol 24:211–220. https://doi.org/10.1007/s10811-011-9669-0 Docherty CL, Riis T, Hannah D et al (2018) Nutrient uptake controls and limitation dynamics in northeast Greenland streams. Polar Res 37:1440107. https://doi.org/10.1080/17518369.2018.1440107 Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662. https://doi.org/10.1007/s00018-003-2155-3 Findlay SEG, Parr TB (2017) Dissolved organic matter. In: Lamberti GA, Hauer FR (eds) Methods in stream ecology. Ecosystem function, vol 2. Academic Press, Cambridge, pp 21–36 Freeman C, Ostle N, Kang H (2001) An enzymic “latch” on a global carbon store. Nature 409:149. https://doi.org/10.1038/35051650 Freimann R, Bürgmann H, Findlay SE, Robinson CT (2013) Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts. ISME J 7:2361–2373. https://doi.org/10.1038/ismej.2013.114 Freixa A, Acuña V, Casellas M et al (2017) Warmer night-time temperature promotes microbial heterotrophic activity and modifies stream sediment community. Glob Change Biol 23:3825–3837. https://doi.org/10.1111/gcb.13664 Friberg N, Milner AM, Svendsen LM et al (2001) Macroinvertebrate stream communities along regional and physico-chemical gradients in Western Greenland. Freshw Biol 46:1753–1764 German DP, Marcelo KRB, Stone MM, Allison SD (2012) The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob Chang Biol 18:1468–1479. https://doi.org/10.1111/j.1365-2486.2011.02615.x Gordon ND, McMahon TA, Finlayson BL et al (2004) Stream hydrology: an introduction for ecologists, 2nd edn. Wiley, Hoboken Hauptmann AL, Markussen TN, Stibal M et al (2016) Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01474 Hjartarson A, Armannsson H (2010) Geothermal research in Greenland. Proc World Geotherm Congr. https://doi.org/10.1093/envhis/emq049 Hodson A, Mumford P, Lister D (2004) Suspended sediment and phosphorous in proglacial rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving waters. Hydrol Process 18:2409–2422. https://doi.org/10.1002/hyp.1471 Hoppe H-G (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Ser 1983:299–308 Huang J, Zhang X, Zhang Q et al (2017) Recently amplified arctic warming has contributed to a continual global warming trend. Nat Clim Chang 7:875–879. https://doi.org/10.1038/s41558-017-0009-5 Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2:383–388. https://doi.org/10.1046/j.1462-2920.2000.00118.x Kellerman AM, Hawkings JR, Wadham JL et al (2020) Glacier outflow dissolved organic matter as a window into seasonally changing carbon sources: Leverett Glacier, Greenland. J Geophys Res Biogeosci 125:1–16. https://doi.org/10.1029/2019jg005161 Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760. https://doi.org/10.1016/0038-0717(94)00242-S Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem Cycles 21:1–11. https://doi.org/10.1029/2007GB002983 Lafreniére MJ, Lamoureux SF (2019) Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth-Sci Rev 191:212–223. https://doi.org/10.1016/j.earscirev.2019.02.018 Mann PJ, Sobczak WV, Larue MM et al (2014) Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Glob Change Biol 20:1089–1100. https://doi.org/10.1111/gcb.12416 Margalef O, Sardans J, Fernández-Martínez M et al (2017) Global patterns of phosphatase activity in natural soils. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-01418-8 Mattheeussen R, Ledeganck P, Vincke S et al (2005) Habitat selection of aquatic testate amoebae communities on Qeqertarsuaq (Disko Island), West Greenland. Acta Protozool 44:253–263 Milner AM, Khamis K, Battin TJ et al (2017) Glacier shrinkage driving global changes in downstream systems. Proc Natl Acad Sci USA 114:201619807. https://doi.org/10.1073/pnas.1619807114 Mohseni O, Stefan HG (1999) Stream temperature/air temperature relationship: a physical interpretation. J Hydrol 218:128–141. https://doi.org/10.1016/S0022-1694(99)00034-7 Mulholland PJ, Rosemond A (1992) Periphyton response to longitudinal nutrient depletion in a woodland stream : evidence of upstream-downstream. J North Am Benthol Soc 11:405–419 Myers-Smith IH, Kerby JT, Phoenix GK et al (2020) Complexity revealed in the greening of the Arctic. Nat Clim Chang 10:106–117. https://doi.org/10.1038/s41558-019-0688-1 Myrstener M, Rocher-Ros G, Burrows RM et al (2018) Persistent nitrogen limitation of stream biofilm communities along climate gradients in the Arctic. Glob Chang Biol 24:3680–3691. https://doi.org/10.1111/gcb.14117 Pastor A, Freixa A, Skovsholt LJ et al (2019) Microbial organic matter utilization in high-Arctic streams: key enzymatic controls. Microb Ecol 78:539–554. https://doi.org/10.1007/s00248-019-01330-w R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Ren Z, Martyniuk N, Oleksy IA et al (2019) Ecological stoichiometry of the mountain cryosphere. Front Ecol Evol 7:1–16. https://doi.org/10.3389/fevo.2019.00360 Romaní AM, Sabater S (2000) Influence of algal biomass on extracellular enzyme activity in river biofilms. Microb Ecol 41:16–24. https://doi.org/10.1007/s002480000041 Romaní AM, Artigas J, Ylla I (2012) Extracellular enzymes in aquatic biofilms: microbial interactions versus water quality effects in the use of organic matter. In: Lear G, Lewis GD (eds) Microbial biofilms: current research and applications. Caister Academic Press, Norfolk, pp 153–174 Romaní AM, Boulêtreau S, Diaz Villanueva V et al (2016) Microbes in aquatic biofilms under the effect of changing climate. In: Marxsen J (ed) Climate change and microbial ecology: current research and future trends. Caister Academic Press, Norfolk, pp 83–96 Romaní AM (1997) Heterotrophic and autotrophic metabolism in Mediterranean streams. Universitat de Barcelona Sand-Jensen K, Pedersen NL, Søndergaard M (2007) Bacterial metabolism in small temperate streams under contemporary and future climates. Freshw Biol 52:2340–2353. https://doi.org/10.1111/j.1365-2427.2007.01852.x Servais P, Billen G, Hascoët M-C (1987) Determination of the biodegradable fraction of dissolved organic matter in waters. Water Res 21:445–450 Sierra CA (2012) Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theoretical considerations. Biogeochemistry 108:1–15. https://doi.org/10.1007/s10533-011-9596-9 Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404. https://doi.org/10.1016/j.soilbio.2009.10.014 Sinsabaugh RL, Follstad JJ (2011) Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry 102:31–43. https://doi.org/10.1007/s10533-010-9482-x Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst 43:313–343. https://doi.org/10.1146/annurev-ecolsys-071112-124414 Sinsabaugh RL, Osgood MP, Findlay S (1994) Enzymatic models for estimating decomposition rates of particulate detritus. J North Am Benthol Soc 13:160–169 Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–799. https://doi.org/10.1038/nature08632 Steinman AD, Lamberti GA, Leavitt PR, Uzarski DG (2017) Biomass and pigments of benthic algae. In: Lamberti GA, Hauer FR (eds) Methods in stream ecology, 3rd edn. Academic Press, Elsevier, pp 223–241 Steinweg JM, Jagadamma S, Frerichs J, Mayes MA (2013) Activation energy of extracellular enzymes in soils from different biomes. PLoS ONE 8:e59943. https://doi.org/10.1371/journal.pone.0059943 Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:2–5. https://doi.org/10.1029/2009GL040222 Vonk JE, Tank SE, Bowden WB et al (2015a) Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12:7129–7167. https://doi.org/10.5194/bg-12-7129-2015 Vonk JE, Tank SE, Mann PJ et al (2015b) Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis. Biogeosciences 12:6915–6930. https://doi.org/10.5194/bg-12-6915-2015 Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19. https://doi.org/10.1016/0016-7061(76)90066-5 Walker DA, Epstein HE, Raynolds MK et al (2012) Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ Res Lett. https://doi.org/10.1088/1748-9326/7/1/015504 Wallenstein MD, Mcmahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Change Biol 15:1631–1639. https://doi.org/10.1111/j.1365-2486.2008.01819.x Wang G, Post WM, Mayes MA et al (2012) Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics. Soil Biol Biochem 48:28–38. https://doi.org/10.1016/j.soilbio.2012.01.011 Wauthy M, Rautio M, Christoffersen KS et al (2018) Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnol Oceanogr Lett 3:186–198. https://doi.org/10.1002/lol2.10063 Weishaar JL, Aiken GR, Bergamaschi BA et al (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708. https://doi.org/10.1021/es030360x Ylla I, Romaní AM, Sabater S (2012) Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature. Microb Ecol 64:593–604. https://doi.org/10.1007/s00248-012-0062-6 Ylla I, Peter H, Romaní AM, Tranvik LJ (2013) Different diversity-functioning relationship in lake and stream bacterial communities. FEMS Microbiol Ecol 85:95–103. https://doi.org/10.1111/1574-6941.12101 Ylla I, Canhoto C, Romaní AM (2014) Effects of warming on stream biofilm organic matter use capabilities. Microb Ecol 68:132–145. https://doi.org/10.1007/s00248-014-0406-5 Závodszky P, Kardos J, Svingor Á, Petsko GA (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 95:7406–7411. https://doi.org/10.1073/pnas.95.13.7406