Teachers’ adoption of an open and interactive e-book for teaching K-12 students Artificial Intelligence: a mixed methods inquiry

Springer Science and Business Media LLC - Tập 8 - Trang 1-20 - 2021
Xiangling Zhang1, Ahmed Tlili2, Keith Shubeck3, Xiangen Hu3, Ronghuai Huang2, Lixin Zhu2
1Beijing Institute of Education, Beijing, China
2Smart Learning Institute of Beijing Normal University, Beijing, China
3Department of Psychology, The University of Memphis, Memphis, USA

Tóm tắt

With the rapid development of information technology, e-books have become convenient for students to improve their learning performance, especially when learning complicated concepts. However, research showed that acceptance of e-books by teachers is fragmented, due to several factors including the e-book design. Therefore, this study combined the potential positive impacts of openness and interaction on learning to design an open and interactive e-book for teaching K-12 students AI. It then applied a mixed method to investigate the factors that affect teachers’ acceptance of this open and interactive e-book based on the technology acceptance model (TAM) and interviews. The obtained results showed that teachers’ intention to continue using this e-book is significantly influenced by their perceived usefulness and attitude towards this e-book. Additionally, both the interactive and openness features were very helpful for teachers in using this e-book in their teaching plans. However, some of them raised several concerns like the interactive coding platform should be personalized based on students’ age. The findings of this study could help different stakeholders (e.g., instructional designers, teachers, policymakers) in facilitating the design and adoption of open and interactive e-books.

Tài liệu tham khảo

Aldosari, M. A., Aljabaa, A. H., Al-Sehaibany, F. S., & Albarakati, S. F. (2018). Learning style preferences of dental students at a single institution in Riyadh, Saudi Arabia, evaluated using the VARK questionnaire. Advances in Medical Education and Practice, 9, 179–186. Ali, S., Williams, R., Payne B., Park H., & Breazeal C. (2019). Constructionism, ethics, and creativity: Developing primary and middle school artificial intelligence education. In Proceedings of IJCAI in the international workshop on education in artificial intelligence K-12 (EDUAI’19). Al-Qatawneh, S., Alsalhi, N., Al Rawashdeh, A., et al. (2019). To E-textbook or not to E-textbook? A quantitative analysis of the extent of the use of E-textbooks at Ajman University from students’ perspectives. Education and Information Technologies, 24, 2997–3019. Anderson, T. (2003). Modes of interaction in distance education: Recent developments and research questions. In M. Moore & G. Anderson (Eds.), Handbook of distance education (pp. 129–144). Erlbaum. Arteaga Sánchez, R., & Duarte Hueros, A. (2010). Motivational factors that influence the acceptance of Moodle using TAM. Computers in Human Behavior, 26(6), 1632–1640. Baek, E.-O., & Monaghan, J. (2013). Journey to textbook affordability: An investigation of students’ use of e-textbooks at multiple campuses. The International Review of Research in Open and Distributed Learning, 14(3), 1–26. Beimers, D. (2014). Correlation between interactive e-books and printed text in reading achievement and student interest. Master of Education Program Theses. Dordt University Retrieved from https://digitalcollections.dordt.edu/med_theses/48/. Bhattacherjee, A. (2000). Acceptance of e-commerce services: The case of electronic brokerages. IEEE Transactions on System, Man, and Cybernetics—Part a: Systems and Humans, 20(4), 411–420. Biranvand, A., & Khasseh, A. A. (2014). E-book reading and its impact on academic status of students at Payame Noor University (p. 1170). Library Philosophy and Practice (e-journal). Blummer, B. A., & Kenton, J. M. (2020). A systematic review of E-books in academic libraries: Access, advantages, and usage. New Review of Academic Librarianship, 26, 109–179. Bozkurt, A., & Bozkaya, M. (2015). Evaluation criteria for interactive E-books for open and distance learning. The International Review of Research in Open and Distributed Learning, 16(5), 58–82. Chen G., Gong C., Yang J., Yang X., Huang R. (2013). The Concept of eTextbooks in K-12 Classes from the Perspective of Its Stakeholders. In: Holzinger A., Pasi G. (eds) Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. HCI-KDD 2013. Lecture Notes in Computer Science, vol 7947. Springer. https://doi.org/10.1007/978-3-642-39146-0_29 Chin WW and Newsted PR. (1999). Structural equation modeling analysis with small samples using partial least squares. In R. Hoyle (Ed.) Statistical strategies for small sample research, (pp.307–341). SAGE. Christ, T., Wang, X. C., Chiu, M. M., & Cho, H. (2019). Kindergartener’s meaning making with multimodal app books: The relations amongst reader characteristics, app book characteristics, and comprehension outcomes. Early Childhood Research Quarterly, 47, 357–372. Carol, C. M., Day, S. L., Zargar, E., Wood, T. S., Taylor, K. S., Jones, M. R., & Hwang, J. K. (2019). Building word knowledge, learning strategies, and metacognition with the Word-Knowledge e-Book. Computers & Education, 128, 284–311. Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3rd ed.). Sage Publications. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319–340. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982–1003. Druga, S., Williams, R., Breazeal, C., & Resnick, M. “Hey google is it OK if I eat you?” initial explorations in child-agent interaction. In Proceedings of the 2017 conference on interaction design and children, 2017 (pp. 595–600). Ebied, A., & Rahman, A. (2015). The effect of interactive e-book on students’ achievement at Najran University in computer in education course. Journal of Education and Practice, 6(19), 71–82. Forgette, C. Teacher perceptions of open educational resources in K-12 Mississippi Classrooms. (2020). Honors Theses. 1309. Retrieved from https://egrove.olemiss.edu/hon_thesis/1309 Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. Ganapathy, M., Wei, V. C. P., & Jui, J. C. (2015). Teachers’ perceptions of creating, sharing and using open education resources (OERs) in Universiti Sains Malaysia (USM). International Journal of e-Education, e-Business, e-Management and e-Learning, 5, 62–72. Gökhan, B., Milan, K., & Ali, M. S. (2016). Teachers’ perceptions towards ICTs in teaching-learning process: Scale validity and reliability study. Computers in Human Behavior, 61, 176–185. Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments, & Computers: A Journal of the Psychonomic Society Inc, 36(2), 193–202. Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572–2593. Hafed, Z., Sabrina, B., & Hadjer, H. (2020). Exploring the behavioral patterns of students learning with a Facebook-based e-book approach. Computers & Education, 156, 103957. Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5th ed.). Prentice-Hall. Hilton, J. (2016). Open educational resources and college textbook choices: A review of research on efficacy and perceptions. Education Technology Research and Development, 64(4), 573–590. Hong, J. Y., Suh, E. H., & Kim, S. J. (2009). Context-aware systems: A literature review and classification. Expert Systems with Applications, 36(4), 8509–8522. Hsiao, C. C., Tiao, M. M., & Chen, C. C. (2016). Using interactive multimedia e-Books for learning blood cell morphology in pediatric hematology. BMC Medical Education, 16(1), 290. Hwang, G., & Lai, C. (2017). Facilitating and bridging out-of-class and in-class learning: An interactive e-book-based flipped learning approach for math courses. Journal of Educational Technology & Society, 20(1), 184–197. Iris, B., Ronny, S., Fazilat, S., Andreas, L., & Katharina, S. (2021). Teachers’ technology use for teaching: Comparing two explanatory mechanisms. Teaching and Teacher Education, 104, 103. Jin, C.-H. (2014). Adoption of e-book among college students: The perspective of an integrated TAM. Computers in Human Behavior, 41, 471–477. Keller J. M. (2000). How to integrate learner motivation planning into lesson planning: The ARCS model approach. VII Semanario, Santiago, Cuba. Keller, J. M. (1979). Motivation and instructional design: A theoretical perspective. Journal of Instructional Development, 2(4), 26–34. Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 3, 2–10. Kelley, M., & Warburton, B. (2011). Survey: Undergraduates prefer print over ebooks. Library Journal, 136(12), 14–15. Kennedy, Z. & Chiasson, S. Teaching with an interactive e-book to improve children’s online privacy knowledge (2016). In Proceedings of the 15th international conference on interaction design and children (pp. 506–511). Khalid, A. S., Mary, L.-K., Anisa, A. H., Zainab, A. S., & Mariam, A. W. (2017). Are we ready for e-books? Omani university students’ uses and perceptions of e-books. The Turkish Online Journal of Educational Technology, 16(2), 11–25. Lee, Y. H., Hsieh, Y. C., & Chen, Y. H. (2013). An investigation of employees’ use of elearning systems: Applying the technology acceptance model. Behaviour & Information Technology, 32(2), 173–189. Malathi, L., & Rohani, A. T. (2010). Utilization of e-book among University Mathematics Students. Procedia - Social and Behavioral Sciences, 8, 580–587. Jongyun, L., George, E. K. W., & Yun, D. C. (2021). Interactive e-book reading vs. paper-based reading: Comparing the effects of different mediums on middle school students’ reading comprehension. System, 97, 102434. Lin, Y. C., Liu, T. C. & Kinshuk. (2015). Research on teachers’ needs when using e-textbooks in teaching. Smart Learning Environments, 2(1). Lin, P.-H., Su, Y.-N., & Huang, Y.-M. (2019). Evaluating reading fluency behavior via reading rates of elementary school students reading e-books. Computers in Human Behavior, 100, 258–265. Liu, Y., Chou, P. L., & Lee, B. O. (2020). Effect of an interactive e-book on nursing students’ electrocardiogram-related learning achievement: A quasi-experimental design. Nurse Education Today, 90, 104427. Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming language and environment. ACM Trans. Comput. Educ., 10, 4. McIsaac, M. S., & Gunawardena, C. N. (1996). Distance education. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology: A project of the Association for Educational Communications and Technology (pp. 403–437). Simon & Schuster Macmillan. McNamara, D. S., Graesser, A. C., McCarthy, P. M., & Cai, Z. (2014). Automated Evaluation of Text and Discourse with Coh-Metrix. Cambridge University Press. Merriam, S. B. (1998). Qualitative research and case study applications in education. revised and expanded from “case study research in education”. Jossey-Bass Publishers. Mohd Roslan, R. (2008). The use of stories and storytelling in primary science teaching and learning. Studies in Education, 12, 79–89. Ngafeeson, M. N., & Sun, J. (2015). The effects of technology innovativeness and system exposure on student acceptance of e-textbooks. Journal of Information Technology Education: Research, 14, 55–71. Ozdemir, O., & Bonk, C. (2017). Turkish teachers’ awareness and perceptions of open educational resources. Journal of Learning for Development, 4(3), 307–321. Padilla-Meléndez, A., del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers & Education, 63, 306–317. Patton E. W., Tissenbaum M., & Harunani F. (2019). MIT app inventor: Objectives, design, and development. In S. C. Kong, & H. Abelson (Eds.) Computational thinking education. Springer. Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage. Pascual, P., Guillamón, C. O., & Jiménez, P. A. (2018). Language teachers’ perceptions on the use of OER language processing technologies in MALL. Computer Assisted Language Learning, 31(5–6), 522–545. RAISE. (2021). Responsible AI for Social Empowerment and Education. Retrieved January 19, 2021 from https://raise.mit.edu/ Rao, S. S. (2003). Electronic books: A review and evaluation. Library Hi Tech, 21(1), 85–93. Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor's comments: A critical look at the use of PLS-SEM in" MIS Quarterly". MIS quarterly, iii–xiv. Roca, J. C., Chiu, C.-M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human-Computer Studies, 64(8), 683–696. Rothman, D. (2006). E-books: Why they matter for distance education and how they could get much better. Innovate: Journal of Online Education, 2(6). Shin, L., Hong, J. C., Wen, M. H., & Pan, Y. C. (2018). Applying technology acceptance model (TAM) to explore users’ behavioral intention to adopt a performance assessment system for E-book production. EURASIA Journal of Mathematics, Science and Technology Education. 14(10). Stewart, D. W., & Shamdasani, P. N. (1998). Focus group research: Exploration and discovery. In L. Bickman (Ed.), Handbook of applied social research methods (Vol. 580, pp. 505–526). Sung, H.-Y., Hwang, G.-J., & Chen, S.-F. (2019). Effects of embedding a problem-posing-based learning guiding strategy into interactive e-books on students’ learning performance and higher order thinking tendency. Interactive Learning Environments, 27(3), 389–401. Tang, H.-T., Lin, Y.-J., & Qian, Y.-X. (2020). Understanding K-12 teachers’ intention to adopt open educational resources: A mixed methods inquiry. British Journal of Educational Technology, 51(6), 2558–2572. Tang, K.-Y. (2021). Paradigm shifts in e-book-supported learning: Evidence from the Web of Science using a co-citation network analysis with an education focus (2010–2019). Computers & Education, 175, 104323. Tavakoli, M., Elias, M., Kismihók, G., & Auer, S. Quality prediction of open educational resources a metadata-based approach. In 2020 IEEE 20th international conference on advanced learning technologies (ICALT), (pp. 29–31). Teo, T., & Zhou, M. (2014). Explaining the intention to use technology among university students: A structural equation modeling approach. Journal of Computing in Higher Education, 26, 124–142. Terlych N. A., & Rodriges Zalipynis R.A. Jupyter lab based system for geospatial environmental data processing. In K. Arai, S. Kapoor, & R. Bhatia (Eds.), Proceedings of the future technologies conference (FTC) 2020, Volume 2. Advances in intelligent systems and computing (Vol. 1289). Springer. Ting-Chia, H., Hal, A., Natalie, L., Yu-Han, T., & Yi-Ting, L. (2021). Behavioral-pattern exploration and development of an instructional tool for young children to learn AI. Computers and Education: Artificial Intelligence, 2, 100012. Touretzky, D.S. Artificial Intelligence Thinking in K-12. Retrieved February 19, 2021 from https://ai4k12.org/wp-content/uploads/2021/08/Touretzky_Gardner-McCune_AI-Thinking_2021.pdf Tsai, D. J. (2015). A comparative analysis on the learning effect of electronic textbooks and paper textbooks. Journal of Textbook Research, 8(2), 39–72. (in Chinese). Turel, Y. K., & Sanal, S. O. (2018). The effects of an ARCS based e-book on student’s achievement, motivation and anxiety. Computers & Education, 127, 130–140. Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451–481. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. Wang, C.-S., Huang, Y.-M., & Kuei-SH,. (2017). Developing a mobile game to support students in learning color mixing in design education. Advances in Mechanical Engineering, 9(2), 1–6. Weng, F., Yang, R.-J., Ho, H.-J., & Su, H.-M. (2018). A TAM-based study of the attitude towards use intention of multimedia among school teachers. Applied System Innovation, 1(3), 36. West, D. M., & Allen, J. R. (2018). How artificial intelligence is transforming the world. Report. April, 24, 2018. West, R. L., Turner, L. H., & Zhao, G. (2010). Introducing communication theory: Analysis and application. McGraw-Hill. Wiley, D., & Iii, J. L. H. (2018). Defining OER-enabled pedagogy. International Review of Research in Open and Distributed Learning, 19(4), 133–147. Williams, D., & Nguyen, V. (2018). Beyond the golden rule: a parent’s guide to preventing and responding to prejudice. Retrieved January 22, 2021 from https://www.learningforjustice.org/sites/default/files/general/beyond_golden_rule.pdf Williams, R., Park, H. W., Oh, L., & Breazeal, C. (2019). PopBots: Designing an artificial intelligence curriculum for early childhood education. In Proceedings of the 9th symposium on education advances in artificial intelligence (EAAI '19). AAAI, Menlo Park, CA, USA. Williams, R., Kaputsos, S. P., & Breazeal, C. (2021). Teacher perspectives on how to train your robot, a middle school AI and ethics curriculum. In Proceedings of the 10th symposium on education advances in artificial intelligence (EAAI ’21). Worm, B. S. (2013). Learning from simple ebooks, online cases or classroom teaching when acquiring complex knowledge. A randomized controlled trial in respiratory physiology and pulmonology. PLoS ONE, 8(9), e73336. Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221–232. Yao, H., Liu, W., Wu, C.-H., & Yuan, Y.-H. (2021). The imprinting effect of SARS experience on the fear of COVID-19: The role of AI and big data. Socio-Economic Planning Sciences, 101086.