Teachers Reporting on Dynamic Geometry Utilization Related to Reasoning Competency in Danish Lower Secondary School
Tóm tắt
Từ khóa
Tài liệu tham khảo
Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.
Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM: The International Journal on Mathematics Education, 34(3), 66–72.
Arzarello, F., Olivero, F., Paolo, D. & Robutti, O. (2007). The transition to formal proof in geometry. In P. Boero (Ed.), Theorems in school (pp. 305–323). Netherlands: Sense Publishers.
Baccaglini-Frank, A., & Mariotti, M. (2010). Generating conjectures in dynamic geometry: The maintaining-dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.
Balacheff, N., & Kaput, J. (1997). Computer-based learning environments in mathematics. In A. Bishop (Ed.), International handbook of mathematics education (pp. 469–501). Dordrecht: Kluwer Academic Publishers.
Bozkurt, G., & Ruthven, K. (2017). Classroom-based professional expertise: A mathematics teacher’s practice with technology. Educational Studies in Mathematics, 94(3), 309–328.
Børne- og Undervisningsministeriet (2019). Matematik Fælles Mål (Mathematics common aims). (https://emu.dk/sites/default/files/2019-08/GSK%20-%20F%C3%A6lles%20M%C3%A5l%20-%20Matematik.pdf).
Edwards, M., Harper, S., Cox, D., Quinlan, J., & Phelps, S. (2014). Cultivating deductive thinking with angle chasing. The Mathematics Teacher, 107(6), 426–431.
Fan, W., & Yan, Z. (2010). Factors affecting response rates of the web survey: A systematic review. Computers in Human Behavior, 26(2), 132–139.
Göritz, A. (2010). Using lotteries, loyalty points, and other incentives to increase participant response and completion. In S. Gosling & J. Johnson (Eds.), Advanced methods for conducting online behavioral research (pp. 219–233). Washington, DC: American Psychological Association.
Healy, L. (2000). Identifying and explaining geometric relationship: Interactions with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th conference of the International Group of the Psychology of learning mathematics (Vol. 1, pp. 103–117). Hiroshima: PME.
Hölzl, R., Healy, L., Hoyles, C., & Noss, R. (1994). Geometrical relationships and dependencies in Cabri. Micromath, 10(3), 8–11.
Højsted, I. (2018). Research based design of mathematics teaching with dynamic geometry. In H.-G. Weigand, A. Clark-Wilson, A. Donevska-Todorova, E. Faggiano, N. Grønbæk, & J. Trgalova (Eds.), Proceedings of the 5th ERME topic conference MEDA (pp. 309–310). Copenhagen: University of Copenhagen/ERME.
Højsted, I. (2019a). Utilizing affordances of dynamic geometry environments to support students’ development of reasoning competency. (Manuscript submitted for publication.)
Højsted, I. (2019b). Guidelines for the design of didactic sequences utilizing dynamic geometry affordances related to mathematical reasoning competency. In U. Jankvist, M. van den Heuvel-Panhuizen & M. Veldhuis (Eds), Proceedings of the eleventh congress of the European Society for Research in mathematics education (CERME 11). Utrecht, The Netherlands: Utrecht University/ERME.
Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44(1/2), 55–85.
Jones, K. (2005). Research on the use of dynamic geometry software: Implications for the classroom. In J. Edwards & D. Wright (Eds.), Integrating ICT into the mathematics classroom (pp. 27–29). Derby: Association of Teachers of Mathematics.
Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.
Laborde, C. (2005a). Robust and soft constructions: Two sides of the use of dynamic geometry environments. In S. Chu, W. Yang, & H. Lew (Eds.), Proceedings of the 10th Asian technology conference in mathematics (pp. 22–35). Cheong-Ju: Advanced Technology Council in Mathematics/Korea National University of Education.
Laborde, C. (2005b). The hidden role of diagrams in students’ construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, O. Skovsmose, & P. Valero (Eds.), Meaning in mathematics education (pp. 159–179). New York: Springer.
Leung, A. (2015). Discernment and reasoning in dynamic geometry environments. In S. Cho (Ed.), Selected regular lectures from the 12th international congress on mathematical education (pp. 451–469). Cham: Springer.
Mariotti, M. (2012). Proof and proving in the classroom: Dynamic geometry systems as tools of semiotic mediation. Research in Mathematics Education, 14(2), 163–185.
NCTM. (2008). Navigating through reasoning and proof in grades 9–12. Reston: National Council of Teachers of Mathematics.
Niss, M., Højgaard, T. (2002/2011). Competencies and mathematical learning ideas and inspiration for the development of mathematics teaching and learning in Denmark. English Edition, IMFUFA tekst no. 485. Roskilde, Denmark: Roskilde University.
Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(1), 9–28.
Niss, M. & Jensen, T. (Eds) (2002). Kompetencer og matematiklæring: Ideer og inspiration til udvikling af matematikundervisning i Danmark, Uddannelsesstyrelsens temahæfteserie 18. Copenhagen, Denmark: The Ministry of Education.
Niss, M., Bruder, R., Planas, N., Turner, R., & Villa-Ochoa, J. (2016). Conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM: Mathematics Education, 48(5), 611–632.
OECD. (2017). PISA 2015 mathematics framework. In PISA 2015 assessment and analytical framework: Science, reading, mathematics and financial literacy (pp. 65–80). Paris: OECD Publishing.
Rasmussen, J., Rasch-Christensen, A., Molbæk, M., Müller Kristensen, R., Fink Lorenzen, R., Reimer, D., Torre, A. (2017). Undervisning med Fælles Mål i dansk og matematik (teaching with common goals in Danish and mathematics). Aarhus, Denmark: DPU, Aarhus Universitet og UC VIA.
Ruthven, K., Hennessy, S., & Brindley, S. (2004). Teacher representations of the successful use of computer-based tools and resources in secondary-school English, mathematics and science. Teaching and Teacher Education, 20(3), 259–275.
Sinclair, N., & Robutti, O. (2013). Technology and the role of proof: The case of dynamic geometry. In M. Clements, A. Bishop, C. Keitel-Kreidt, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 571–596). New York: Springer.
Trgalova, J., Soury-Lavergne, S., & Jahn, A. (2011). Quality assessment process for dynamic geometry resources in Intergeo project. ZDM: The International Journal on Mathematics Education, 43(3), 337–351.
Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2/3), 110–138.
Undervisningsministeriet (2015). Indsatsen for øget anvendelse af it (Investment for increased usage of IT). (https://www.uvm.dk/Uddannelser/Folkeskolen/Laering-og-laeringsmiljoe/It-i-undervisningen/Oeget-anvendelse-af-it-i-folkeskolen).