Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns

James R. Carter1, James H Keith2, Pradip V Barde3, Tresa S. Fraser1, Malcolm J. Fraser1
1Department of Biology, Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
2Department of Biomedical Sciences, GeNYsis Center for Excellence in Cancer Genomics, University at Albany, Rensselaer, USA
3National Institute of Virology , Pune , India

Tóm tắt

Abstract Background

Dengue viruses (DENV) are one of the most important viral diseases in the world with approximately 100 million infections and 200,000 deaths each year. The current lack of an approved tetravalent vaccine and ineffective insecticide control measures warrant a search for alternatives to effectively combat DENV. The trans-splicing variant of the Tetrahymena thermophila group I intron catalytic RNA, or ribozyme, is a powerful tool for post-transcriptional RNA modification. The nature of the ribozyme and the predictability with which it can be directed makes it a powerful tool for modifying RNA in nearly any cell type without the need for genome-altering gene therapy techniques or dependence on native cofactors.

Results

Several anti-DENV Group I trans-splicing introns (αDENV-GrpIs) were designed and tested for their ability to target DENV-2 NGC genomes in situ. We have successfully targeted two different uracil bases on the positive sense genomic strand within the highly conserved 5'-3' cyclization sequence (CS) region common to all serotypes of DENV with our αDENV-GrpIs. Our ribozymes have demonstrated ability to specifically trans-splice a new RNA sequence downstream of the targeted site in vitro and in transfected insect cells as analyzed by firefly luciferase and RT-PCR assays. The effectiveness of these αDENV-GrpIs to target infecting DENV genomes is also validated in transfected or transformed Aedes mosquito cell lines upon infection with unattenuated DENV-2 NGC.

Conclusions

Analysis shows that our αDENV-GrpIs have the ability to effectively trans-splice the DENV genome in situ. Notably, these results show that the αDENV-GrpI 9v1, designed to be active against all forms of Dengue virus, effectively targeted the DENV-2 NGC genome in a sequence specific manner. These novel αDENV-GrpI introns provide a striking alternative to other RNA based approaches for the transgenic suppression of DENV in transformed mosquito cells and tissues.

Từ khóa


Tài liệu tham khảo

Clyde K, Kyle JL, Harris E: Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol. 2006, 80 (23): 11418-11431. 10.1128/JVI.01257-06

James AA: Gene drive systems in mosquitoes: rules of the road. Trends Parasitol. 2005, 21 (2): 64-67. 10.1016/j.pt.2004.11.004

Sinkins SP, Gould F: Gene drive systems for insect disease vectors. Nat Rev Genet. 2006, 7 (6): 427-435. 10.1038/nrg1870

Nawtaisong P, Keith J, Fraser T, Balaraman V, Kolokoltsov A, Davey RA, Higgs S, Mohammed A, Rongsriyam Y, Komalamisra N: Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome. Virol J. 2009, 6: 73- 10.1186/1743-422X-6-73

Cech TR: RNA editing: world's smallest introns?. Cell. 1991, 64 (4): 667-669. 10.1016/0092-8674(91)90494-J

Long MB, Jones JP, Sullenger BA, Byun J: Ribozyme-mediated revision of RNA and DNA. J Clin Invest. 2003, 112 (3): 312-318.

Ayre BG, Kohler U, Goodman HM, Haseloff J: Design of highly specific cytotoxins by using trans-splicing ribozymes. Proc Natl Acad Sci USA. 1999, 96 (7): 3507-3512. 10.1073/pnas.96.7.3507

Byun J, Lan N, Long M, Sullenger BA: Efficient and specific repair of sickle beta-globin RNA by trans-splicing ribozymes. Rna. 2003, 9 (10): 1254-1263. 10.1261/rna.5450203

Jung HS, Kwon BS, Lee SW: Tumor-specific gene delivery using RNA-targeting Tetrahymena group I intron. Biotechnol Lett. 2005, 27 (8): 567-574. 10.1007/s10529-005-2883-6

Kastanos E, Hjiantoniou E, Phylactou LA: Restoration of protein synthesis in pancreatic cancer cells by trans-splicing ribozymes. Biochem Biophys Res Commun. 2004, 322 (3): 930-934. 10.1016/j.bbrc.2004.07.203

Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P: Initial sequencing and comparative analysis of the mouse genome. Nature. 2002, 420 (6915): 520-562. 10.1038/nature01262

Ryu KJ, Lee SW: Identification of the most accessible sites to ribozymes on the hepatitis C virus internal ribosome entry site. J Biochem Mol Biol. 2003, 36 (6): 538-544.

Ryu KJ, Lee SW: Comparative analysis of intracellular trans-splicing ribozyme activity against hepatitis C virus internal ribosome entry site. J Microbiol. 2004, 42 (4): 361-364.

Sullenger BA, Cech TR: Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature. 1994, 371 (6498): 619-622. 10.1038/371619a0

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W: Initial sequencing and analysis of the human genome. Nature. 2001, 409 (6822): 860-921. 10.1038/35057062

Jeong JS, Lee SW, Hong SH, Lee YJ, Jung HI, Cho KS, Seo HH, Lee SJ, Park S, Song MS: Antitumor effects of systemically delivered adenovirus harboring trans-splicing ribozyme in intrahepatic colon cancer mouse model. Clin Cancer Res. 2008, 14 (1): 281-290. 10.1158/1078-0432.CCR-07-1524

Kwon BS, Jung HS, Song MS, Cho KS, Kim SC, Kimm K, Jeong JS, Kim IH, Lee SW: Specific regression of human cancer cells by ribozyme-mediated targeted replacement of tumor-specific transcript. Mol Ther. 2005, 12 (5): 824-834. 10.1016/j.ymthe.2005.06.096

Watanabe T, Sullenger BA: Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc Natl Acad Sci USA. 2000, 97 (15): 8490-8494. 10.1073/pnas.150104097

Rogers CS, Vanoye CG, Sullenger BA, George AL: Functional repair of a mutant chloride channel using a trans-splicing ribozyme. J Clin Invest. 2002, 110 (12): 1783-1789.

Kohler U, Ayre BG, Goodman HM, Haseloff J: Trans-splicing ribozymes for targeted gene delivery. J Mol Biol. 1999, 285 (5): 1935-1950. 10.1006/jmbi.1998.2447

Ryu KJ, Kim JH, Lee SW: Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol Ther. 2003, 7 (3): 386-395. 10.1016/S1525-0016(02)00063-1

Hahn CS, Hahn YS, Rice CM, Lee E, Dalgarno L, Strauss EG, Strauss JH: Conserved elements in the 3' untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol. 1987, 198 (1): 33-41. 10.1016/0022-2836(87)90455-4

Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV: Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol. 2005, 79 (11): 6631-6643. 10.1128/JVI.79.11.6631-6643.2005

Markoff L: 5'- and 3'-noncoding regions in flavivirus RNA. Adv Virus Res. 2003, 59: 177-228. full_text

Alvarez DE, Filomatori CV, Gamarnik AV: Functional analysis of dengue virus cyclization sequences located at the 5' and 3'UTRs. Virology. 2008, 375 (1): 223-235. 10.1016/j.virol.2008.01.014

Burke JM: Selection of the 3'-splice site in group I introns. FEBS Lett. 1989, 250 (2): 129-133. 10.1016/0014-5793(89)80704-5

Jones JT, Lee SW, Sullenger BA: Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Nat Med. 1996, 2 (6): 643-648. 10.1038/nm0696-643

Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA: Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science. 1998, 280 (5369): 1593-1596. 10.1126/science.280.5369.1593

Bell MA, Sinha J, Johnson AK, Testa SM: Enhancing the second step of the trans excision-splicing reaction of a group I ribozyme by exploiting P9.0 and P10 for intermolecular recognition. Biochemistry. 2004, 43 (14): 4323-4331. 10.1021/bi035874n

Cech TR: Self-splicing of group I introns. Annu Rev Biochem. 1990, 59: 543-568. 10.1146/annurev.bi.59.070190.002551

Strobel SA, Cech TR: Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry. 1993, 32 (49): 13593-13604. 10.1021/bi00212a027

Campbell TB, Cech TR: Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity. Biochemistry. 1996, 35 (35): 11493-11502. 10.1021/bi960510z

Guo F, Cech TR: In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron. RNA. 2002, 8 (5): 647-658. 10.1017/S1355838202029011

Carter JR, Fraser TS, Fraser MJ: Examining the relative activity of several dicistrovirus intergenic internal ribosome entry site elements in uninfected insect and mammalian cell lines. J Gen Virol. 2008, 89 (Pt 12): 3150-3155. 10.1099/vir.0.2008/003921-0

Peng T, Wang JL, Chen W, Zhang JL, Gao N, Chen ZT, Xu XF, Fan DY, An J: Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis. Can J Microbiol. 2009, 55 (2): 139-145. 10.1139/W08-107

Acosta EG, Castilla V, Damonte EB: Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol. 2008, 89 (Pt 2): 474-484. 10.1099/vir.0.83357-0

Caplen NJ, Zheng Z, Falgout B, Morgan RA: Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol Ther. 2002, 6 (2): 243-251. 10.1006/mthe.2002.0652

Adelman ZN, Blair CD, Carlson JO, Beaty BJ, Olson KE: Sindbis virus-induced silencing of dengue viruses in mosquitoes. Insect Mol Biol. 2001, 10 (3): 265-273. 10.1046/j.1365-2583.2001.00267.x

Adelman ZN, Sanchez-Vargas I, Travanty EA, Carlson JO, Beaty BJ, Blair CD, Olson KE: RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J Virol. 2002, 76 (24): 12925-12933. 10.1128/JVI.76.24.12925-12933.2002

Adelman ZN, Jasinskiene N, Vally KJ, Peek C, Travanty EA, Olson KE, Brown SE, Stephens JL, Knudson DL, Coates CJ: Formation and loss of large, unstable tandem arrays of the piggyBac transposable element in the yellow fever mosquito, Aedes aegypti. Transgenic Res. 2004, 13 (5): 411-425. 10.1007/s11248-004-6067-2

Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE: Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA. 2006, 103 (11): 4198-4203. 10.1073/pnas.0600479103

Olson KE, Higgs S, Gaines PJ, Powers AM, Davis BS, Kamrud KI, Carlson JO, Blair CD, Beaty BJ: Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science. 1996, 272 (5263): 884-886. 10.1126/science.272.5263.884

Du Q, Thonberg H, Wang J, Wahlestedt C, Liang Z: A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res. 2005, 33 (5): 1671-1677. 10.1093/nar/gki312

Ng CY, Gu F, Phong WY, Chen YL, Lim SP, Davidson A, Vasudevan SG: Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing. Antiviral Res. 2007, 76 (3): 222-231. 10.1016/j.antiviral.2007.06.007

Zhang W, Singam R, Hellermann G, Kong X, Juan HS, Lockey RF, Wu SJ, Porter K, Mohapatra SS: Attenuation of dengue virus infection by adeno-associated virus-mediated siRNA delivery. Genet Vaccines Ther. 2004, 2 (1): 8- 10.1186/1479-0556-2-8

Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673

Pinkerton AC, Michel K, O'Brochta DA, Atkinson PW: Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol Biol. 2000, 9 (1): 1-10. 10.1046/j.1365-2583.2000.00133.x

Joyce GF, Inoue T: A novel technique for the rapid preparation of mutant RNAs. Nucleic Acids Res. 1989, 17 (2): 711-722. 10.1093/nar/17.12.4885

Li X, Lobo N, Bauser CA, Fraser MJ: The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics. 2001, 266 (2): 190-198. 10.1007/s004380100525

Henchal EA, McCown JM, Burke DS, Seguin MC, Brandt WE: Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg. 1985, 34 (1): 162-169.

Karber G: 50% end-point calculation. Arch Exp Pathol Pharmk. 1931, 162: 480-483. 10.1007/BF01863914. 10.1007/BF01863914

Johnson TH, Tijerina P, Chadee AB, Herschlag D, Russell R: Structural specificity conferred by a group I RNA peripheral element. Proc Natl Acad Sci USA. 2005, 102 (29): 10176-10181. 10.1073/pnas.0501498102